Revenue maximization for multiple advertisements placement on a web banner using a pixel-price model
The aim of this paper is to optimize the allocation of multiple advertisements on a Web banner, where the price of an advertisement depends on the location at the banner. This problem can be defined as a two-dimensional single orthogonal knapsack problem with a location-based pixel-price model. A fo...
Gespeichert in:
Veröffentlicht in: | Annals of operations research 2024-06, Vol.337 (1), p.135-166 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 166 |
---|---|
container_issue | 1 |
container_start_page | 135 |
container_title | Annals of operations research |
container_volume | 337 |
creator | Langendoen, Edmar Frasincar, Flavius Riezebos, Mark Matsiiako, Vladyslav Boekestijn, David |
description | The aim of this paper is to optimize the allocation of multiple advertisements on a Web banner, where the price of an advertisement depends on the location at the banner. This problem can be defined as a two-dimensional single orthogonal knapsack problem with a location-based pixel-price model. A formulation is proposed in which the problem is specified as a 0–1 integer programming problem. As this problem is NP-complete, we mainly focus on a heuristic approach to solve the problem. We propose two new heuristic algorithms: the reactive GRASP algorithm and the partitioning left-justified algorithm. Next to that, we present an exact algorithm that is able to solve small problem instances in a reasonable time. These newly presented algorithms are compared with respect to efficiency and effectiveness to existing algorithms that solve the problem without a location-based pixel-price model. To test the quality of the algorithms, we have executed two experiments. The results of these experiments show that overall the reactive GRASP algorithm is the most effective algorithm, whereas the greedy stripping algorithm is the most efficient. |
doi_str_mv | 10.1007/s10479-024-05920-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3062305331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3062305331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-5977254eaecd640a7bf72499d7da29c6db3cc25c50b81d63f1bee51d4fdab9743</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxYMoWKv_gKeA5-gk2TTdoxS_oCCInkM2mS1b9stkt1b_emNX8OZphuG9N48fIZccrjmAvokcMp0zEBkDlQtg-yMy40oLlku5PCYzECpjSko4JWcxbgGA86WaEf-CO2xHpI3dV031ZYeqa2nZBdqM9VD1NVLrdxiGKmKD7RBpX1t3WGkSWvqBBS1s22KgY6zaTTr11R5r1ofKpdjOY31OTkpbR7z4nXPydn_3unpk6-eHp9XtmjnJs4GpXOtUEy06v8jA6qLUIstzr70VuVv4QjonlFNQLLlfyJIXiIr7rPS2yHUm5-Rqyu1D9z5iHMy2G0ObXhoJCyEhAeBJJSaVC12MAUuTqjY2fBoO5oemmWiaRNMcaJp9MsnJFJO43WD4i_7H9Q2HxHpc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3062305331</pqid></control><display><type>article</type><title>Revenue maximization for multiple advertisements placement on a web banner using a pixel-price model</title><source>SpringerLink Journals - AutoHoldings</source><creator>Langendoen, Edmar ; Frasincar, Flavius ; Riezebos, Mark ; Matsiiako, Vladyslav ; Boekestijn, David</creator><creatorcontrib>Langendoen, Edmar ; Frasincar, Flavius ; Riezebos, Mark ; Matsiiako, Vladyslav ; Boekestijn, David</creatorcontrib><description>The aim of this paper is to optimize the allocation of multiple advertisements on a Web banner, where the price of an advertisement depends on the location at the banner. This problem can be defined as a two-dimensional single orthogonal knapsack problem with a location-based pixel-price model. A formulation is proposed in which the problem is specified as a 0–1 integer programming problem. As this problem is NP-complete, we mainly focus on a heuristic approach to solve the problem. We propose two new heuristic algorithms: the reactive GRASP algorithm and the partitioning left-justified algorithm. Next to that, we present an exact algorithm that is able to solve small problem instances in a reasonable time. These newly presented algorithms are compared with respect to efficiency and effectiveness to existing algorithms that solve the problem without a location-based pixel-price model. To test the quality of the algorithms, we have executed two experiments. The results of these experiments show that overall the reactive GRASP algorithm is the most effective algorithm, whereas the greedy stripping algorithm is the most efficient.</description><identifier>ISSN: 0254-5330</identifier><identifier>EISSN: 1572-9338</identifier><identifier>DOI: 10.1007/s10479-024-05920-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Business and Management ; Combinatorics ; Greedy algorithms ; Heuristic methods ; Integer programming ; Knapsack problem ; Operations Research/Decision Theory ; Optimization ; Original Research ; Pixels ; Theory of Computation ; Webs</subject><ispartof>Annals of operations research, 2024-06, Vol.337 (1), p.135-166</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-5977254eaecd640a7bf72499d7da29c6db3cc25c50b81d63f1bee51d4fdab9743</cites><orcidid>0000-0002-8031-758X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10479-024-05920-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10479-024-05920-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Langendoen, Edmar</creatorcontrib><creatorcontrib>Frasincar, Flavius</creatorcontrib><creatorcontrib>Riezebos, Mark</creatorcontrib><creatorcontrib>Matsiiako, Vladyslav</creatorcontrib><creatorcontrib>Boekestijn, David</creatorcontrib><title>Revenue maximization for multiple advertisements placement on a web banner using a pixel-price model</title><title>Annals of operations research</title><addtitle>Ann Oper Res</addtitle><description>The aim of this paper is to optimize the allocation of multiple advertisements on a Web banner, where the price of an advertisement depends on the location at the banner. This problem can be defined as a two-dimensional single orthogonal knapsack problem with a location-based pixel-price model. A formulation is proposed in which the problem is specified as a 0–1 integer programming problem. As this problem is NP-complete, we mainly focus on a heuristic approach to solve the problem. We propose two new heuristic algorithms: the reactive GRASP algorithm and the partitioning left-justified algorithm. Next to that, we present an exact algorithm that is able to solve small problem instances in a reasonable time. These newly presented algorithms are compared with respect to efficiency and effectiveness to existing algorithms that solve the problem without a location-based pixel-price model. To test the quality of the algorithms, we have executed two experiments. The results of these experiments show that overall the reactive GRASP algorithm is the most effective algorithm, whereas the greedy stripping algorithm is the most efficient.</description><subject>Algorithms</subject><subject>Business and Management</subject><subject>Combinatorics</subject><subject>Greedy algorithms</subject><subject>Heuristic methods</subject><subject>Integer programming</subject><subject>Knapsack problem</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Original Research</subject><subject>Pixels</subject><subject>Theory of Computation</subject><subject>Webs</subject><issn>0254-5330</issn><issn>1572-9338</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kM1LAzEQxYMoWKv_gKeA5-gk2TTdoxS_oCCInkM2mS1b9stkt1b_emNX8OZphuG9N48fIZccrjmAvokcMp0zEBkDlQtg-yMy40oLlku5PCYzECpjSko4JWcxbgGA86WaEf-CO2xHpI3dV031ZYeqa2nZBdqM9VD1NVLrdxiGKmKD7RBpX1t3WGkSWvqBBS1s22KgY6zaTTr11R5r1ofKpdjOY31OTkpbR7z4nXPydn_3unpk6-eHp9XtmjnJs4GpXOtUEy06v8jA6qLUIstzr70VuVv4QjonlFNQLLlfyJIXiIr7rPS2yHUm5-Rqyu1D9z5iHMy2G0ObXhoJCyEhAeBJJSaVC12MAUuTqjY2fBoO5oemmWiaRNMcaJp9MsnJFJO43WD4i_7H9Q2HxHpc</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Langendoen, Edmar</creator><creator>Frasincar, Flavius</creator><creator>Riezebos, Mark</creator><creator>Matsiiako, Vladyslav</creator><creator>Boekestijn, David</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TA</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-8031-758X</orcidid></search><sort><creationdate>20240601</creationdate><title>Revenue maximization for multiple advertisements placement on a web banner using a pixel-price model</title><author>Langendoen, Edmar ; Frasincar, Flavius ; Riezebos, Mark ; Matsiiako, Vladyslav ; Boekestijn, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-5977254eaecd640a7bf72499d7da29c6db3cc25c50b81d63f1bee51d4fdab9743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Business and Management</topic><topic>Combinatorics</topic><topic>Greedy algorithms</topic><topic>Heuristic methods</topic><topic>Integer programming</topic><topic>Knapsack problem</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Original Research</topic><topic>Pixels</topic><topic>Theory of Computation</topic><topic>Webs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Langendoen, Edmar</creatorcontrib><creatorcontrib>Frasincar, Flavius</creatorcontrib><creatorcontrib>Riezebos, Mark</creatorcontrib><creatorcontrib>Matsiiako, Vladyslav</creatorcontrib><creatorcontrib>Boekestijn, David</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Annals of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Langendoen, Edmar</au><au>Frasincar, Flavius</au><au>Riezebos, Mark</au><au>Matsiiako, Vladyslav</au><au>Boekestijn, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revenue maximization for multiple advertisements placement on a web banner using a pixel-price model</atitle><jtitle>Annals of operations research</jtitle><stitle>Ann Oper Res</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>337</volume><issue>1</issue><spage>135</spage><epage>166</epage><pages>135-166</pages><issn>0254-5330</issn><eissn>1572-9338</eissn><abstract>The aim of this paper is to optimize the allocation of multiple advertisements on a Web banner, where the price of an advertisement depends on the location at the banner. This problem can be defined as a two-dimensional single orthogonal knapsack problem with a location-based pixel-price model. A formulation is proposed in which the problem is specified as a 0–1 integer programming problem. As this problem is NP-complete, we mainly focus on a heuristic approach to solve the problem. We propose two new heuristic algorithms: the reactive GRASP algorithm and the partitioning left-justified algorithm. Next to that, we present an exact algorithm that is able to solve small problem instances in a reasonable time. These newly presented algorithms are compared with respect to efficiency and effectiveness to existing algorithms that solve the problem without a location-based pixel-price model. To test the quality of the algorithms, we have executed two experiments. The results of these experiments show that overall the reactive GRASP algorithm is the most effective algorithm, whereas the greedy stripping algorithm is the most efficient.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10479-024-05920-x</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0002-8031-758X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0254-5330 |
ispartof | Annals of operations research, 2024-06, Vol.337 (1), p.135-166 |
issn | 0254-5330 1572-9338 |
language | eng |
recordid | cdi_proquest_journals_3062305331 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Business and Management Combinatorics Greedy algorithms Heuristic methods Integer programming Knapsack problem Operations Research/Decision Theory Optimization Original Research Pixels Theory of Computation Webs |
title | Revenue maximization for multiple advertisements placement on a web banner using a pixel-price model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A38%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revenue%20maximization%20for%20multiple%20advertisements%20placement%20on%20a%20web%20banner%20using%20a%20pixel-price%20model&rft.jtitle=Annals%20of%20operations%20research&rft.au=Langendoen,%20Edmar&rft.date=2024-06-01&rft.volume=337&rft.issue=1&rft.spage=135&rft.epage=166&rft.pages=135-166&rft.issn=0254-5330&rft.eissn=1572-9338&rft_id=info:doi/10.1007/s10479-024-05920-x&rft_dat=%3Cproquest_cross%3E3062305331%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3062305331&rft_id=info:pmid/&rfr_iscdi=true |