Revenue maximization for multiple advertisements placement on a web banner using a pixel-price model

The aim of this paper is to optimize the allocation of multiple advertisements on a Web banner, where the price of an advertisement depends on the location at the banner. This problem can be defined as a two-dimensional single orthogonal knapsack problem with a location-based pixel-price model. A fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of operations research 2024-06, Vol.337 (1), p.135-166
Hauptverfasser: Langendoen, Edmar, Frasincar, Flavius, Riezebos, Mark, Matsiiako, Vladyslav, Boekestijn, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 166
container_issue 1
container_start_page 135
container_title Annals of operations research
container_volume 337
creator Langendoen, Edmar
Frasincar, Flavius
Riezebos, Mark
Matsiiako, Vladyslav
Boekestijn, David
description The aim of this paper is to optimize the allocation of multiple advertisements on a Web banner, where the price of an advertisement depends on the location at the banner. This problem can be defined as a two-dimensional single orthogonal knapsack problem with a location-based pixel-price model. A formulation is proposed in which the problem is specified as a 0–1 integer programming problem. As this problem is NP-complete, we mainly focus on a heuristic approach to solve the problem. We propose two new heuristic algorithms: the reactive GRASP algorithm and the partitioning left-justified algorithm. Next to that, we present an exact algorithm that is able to solve small problem instances in a reasonable time. These newly presented algorithms are compared with respect to efficiency and effectiveness to existing algorithms that solve the problem without a location-based pixel-price model. To test the quality of the algorithms, we have executed two experiments. The results of these experiments show that overall the reactive GRASP algorithm is the most effective algorithm, whereas the greedy stripping algorithm is the most efficient.
doi_str_mv 10.1007/s10479-024-05920-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3062305331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3062305331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-5977254eaecd640a7bf72499d7da29c6db3cc25c50b81d63f1bee51d4fdab9743</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxYMoWKv_gKeA5-gk2TTdoxS_oCCInkM2mS1b9stkt1b_emNX8OZphuG9N48fIZccrjmAvokcMp0zEBkDlQtg-yMy40oLlku5PCYzECpjSko4JWcxbgGA86WaEf-CO2xHpI3dV031ZYeqa2nZBdqM9VD1NVLrdxiGKmKD7RBpX1t3WGkSWvqBBS1s22KgY6zaTTr11R5r1ofKpdjOY31OTkpbR7z4nXPydn_3unpk6-eHp9XtmjnJs4GpXOtUEy06v8jA6qLUIstzr70VuVv4QjonlFNQLLlfyJIXiIr7rPS2yHUm5-Rqyu1D9z5iHMy2G0ObXhoJCyEhAeBJJSaVC12MAUuTqjY2fBoO5oemmWiaRNMcaJp9MsnJFJO43WD4i_7H9Q2HxHpc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3062305331</pqid></control><display><type>article</type><title>Revenue maximization for multiple advertisements placement on a web banner using a pixel-price model</title><source>SpringerLink Journals - AutoHoldings</source><creator>Langendoen, Edmar ; Frasincar, Flavius ; Riezebos, Mark ; Matsiiako, Vladyslav ; Boekestijn, David</creator><creatorcontrib>Langendoen, Edmar ; Frasincar, Flavius ; Riezebos, Mark ; Matsiiako, Vladyslav ; Boekestijn, David</creatorcontrib><description>The aim of this paper is to optimize the allocation of multiple advertisements on a Web banner, where the price of an advertisement depends on the location at the banner. This problem can be defined as a two-dimensional single orthogonal knapsack problem with a location-based pixel-price model. A formulation is proposed in which the problem is specified as a 0–1 integer programming problem. As this problem is NP-complete, we mainly focus on a heuristic approach to solve the problem. We propose two new heuristic algorithms: the reactive GRASP algorithm and the partitioning left-justified algorithm. Next to that, we present an exact algorithm that is able to solve small problem instances in a reasonable time. These newly presented algorithms are compared with respect to efficiency and effectiveness to existing algorithms that solve the problem without a location-based pixel-price model. To test the quality of the algorithms, we have executed two experiments. The results of these experiments show that overall the reactive GRASP algorithm is the most effective algorithm, whereas the greedy stripping algorithm is the most efficient.</description><identifier>ISSN: 0254-5330</identifier><identifier>EISSN: 1572-9338</identifier><identifier>DOI: 10.1007/s10479-024-05920-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Business and Management ; Combinatorics ; Greedy algorithms ; Heuristic methods ; Integer programming ; Knapsack problem ; Operations Research/Decision Theory ; Optimization ; Original Research ; Pixels ; Theory of Computation ; Webs</subject><ispartof>Annals of operations research, 2024-06, Vol.337 (1), p.135-166</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-5977254eaecd640a7bf72499d7da29c6db3cc25c50b81d63f1bee51d4fdab9743</cites><orcidid>0000-0002-8031-758X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10479-024-05920-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10479-024-05920-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Langendoen, Edmar</creatorcontrib><creatorcontrib>Frasincar, Flavius</creatorcontrib><creatorcontrib>Riezebos, Mark</creatorcontrib><creatorcontrib>Matsiiako, Vladyslav</creatorcontrib><creatorcontrib>Boekestijn, David</creatorcontrib><title>Revenue maximization for multiple advertisements placement on a web banner using a pixel-price model</title><title>Annals of operations research</title><addtitle>Ann Oper Res</addtitle><description>The aim of this paper is to optimize the allocation of multiple advertisements on a Web banner, where the price of an advertisement depends on the location at the banner. This problem can be defined as a two-dimensional single orthogonal knapsack problem with a location-based pixel-price model. A formulation is proposed in which the problem is specified as a 0–1 integer programming problem. As this problem is NP-complete, we mainly focus on a heuristic approach to solve the problem. We propose two new heuristic algorithms: the reactive GRASP algorithm and the partitioning left-justified algorithm. Next to that, we present an exact algorithm that is able to solve small problem instances in a reasonable time. These newly presented algorithms are compared with respect to efficiency and effectiveness to existing algorithms that solve the problem without a location-based pixel-price model. To test the quality of the algorithms, we have executed two experiments. The results of these experiments show that overall the reactive GRASP algorithm is the most effective algorithm, whereas the greedy stripping algorithm is the most efficient.</description><subject>Algorithms</subject><subject>Business and Management</subject><subject>Combinatorics</subject><subject>Greedy algorithms</subject><subject>Heuristic methods</subject><subject>Integer programming</subject><subject>Knapsack problem</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Original Research</subject><subject>Pixels</subject><subject>Theory of Computation</subject><subject>Webs</subject><issn>0254-5330</issn><issn>1572-9338</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kM1LAzEQxYMoWKv_gKeA5-gk2TTdoxS_oCCInkM2mS1b9stkt1b_emNX8OZphuG9N48fIZccrjmAvokcMp0zEBkDlQtg-yMy40oLlku5PCYzECpjSko4JWcxbgGA86WaEf-CO2xHpI3dV031ZYeqa2nZBdqM9VD1NVLrdxiGKmKD7RBpX1t3WGkSWvqBBS1s22KgY6zaTTr11R5r1ofKpdjOY31OTkpbR7z4nXPydn_3unpk6-eHp9XtmjnJs4GpXOtUEy06v8jA6qLUIstzr70VuVv4QjonlFNQLLlfyJIXiIr7rPS2yHUm5-Rqyu1D9z5iHMy2G0ObXhoJCyEhAeBJJSaVC12MAUuTqjY2fBoO5oemmWiaRNMcaJp9MsnJFJO43WD4i_7H9Q2HxHpc</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Langendoen, Edmar</creator><creator>Frasincar, Flavius</creator><creator>Riezebos, Mark</creator><creator>Matsiiako, Vladyslav</creator><creator>Boekestijn, David</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TA</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-8031-758X</orcidid></search><sort><creationdate>20240601</creationdate><title>Revenue maximization for multiple advertisements placement on a web banner using a pixel-price model</title><author>Langendoen, Edmar ; Frasincar, Flavius ; Riezebos, Mark ; Matsiiako, Vladyslav ; Boekestijn, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-5977254eaecd640a7bf72499d7da29c6db3cc25c50b81d63f1bee51d4fdab9743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Business and Management</topic><topic>Combinatorics</topic><topic>Greedy algorithms</topic><topic>Heuristic methods</topic><topic>Integer programming</topic><topic>Knapsack problem</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Original Research</topic><topic>Pixels</topic><topic>Theory of Computation</topic><topic>Webs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Langendoen, Edmar</creatorcontrib><creatorcontrib>Frasincar, Flavius</creatorcontrib><creatorcontrib>Riezebos, Mark</creatorcontrib><creatorcontrib>Matsiiako, Vladyslav</creatorcontrib><creatorcontrib>Boekestijn, David</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Annals of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Langendoen, Edmar</au><au>Frasincar, Flavius</au><au>Riezebos, Mark</au><au>Matsiiako, Vladyslav</au><au>Boekestijn, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revenue maximization for multiple advertisements placement on a web banner using a pixel-price model</atitle><jtitle>Annals of operations research</jtitle><stitle>Ann Oper Res</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>337</volume><issue>1</issue><spage>135</spage><epage>166</epage><pages>135-166</pages><issn>0254-5330</issn><eissn>1572-9338</eissn><abstract>The aim of this paper is to optimize the allocation of multiple advertisements on a Web banner, where the price of an advertisement depends on the location at the banner. This problem can be defined as a two-dimensional single orthogonal knapsack problem with a location-based pixel-price model. A formulation is proposed in which the problem is specified as a 0–1 integer programming problem. As this problem is NP-complete, we mainly focus on a heuristic approach to solve the problem. We propose two new heuristic algorithms: the reactive GRASP algorithm and the partitioning left-justified algorithm. Next to that, we present an exact algorithm that is able to solve small problem instances in a reasonable time. These newly presented algorithms are compared with respect to efficiency and effectiveness to existing algorithms that solve the problem without a location-based pixel-price model. To test the quality of the algorithms, we have executed two experiments. The results of these experiments show that overall the reactive GRASP algorithm is the most effective algorithm, whereas the greedy stripping algorithm is the most efficient.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10479-024-05920-x</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0002-8031-758X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0254-5330
ispartof Annals of operations research, 2024-06, Vol.337 (1), p.135-166
issn 0254-5330
1572-9338
language eng
recordid cdi_proquest_journals_3062305331
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Business and Management
Combinatorics
Greedy algorithms
Heuristic methods
Integer programming
Knapsack problem
Operations Research/Decision Theory
Optimization
Original Research
Pixels
Theory of Computation
Webs
title Revenue maximization for multiple advertisements placement on a web banner using a pixel-price model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A38%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revenue%20maximization%20for%20multiple%20advertisements%20placement%20on%20a%20web%20banner%20using%20a%20pixel-price%20model&rft.jtitle=Annals%20of%20operations%20research&rft.au=Langendoen,%20Edmar&rft.date=2024-06-01&rft.volume=337&rft.issue=1&rft.spage=135&rft.epage=166&rft.pages=135-166&rft.issn=0254-5330&rft.eissn=1572-9338&rft_id=info:doi/10.1007/s10479-024-05920-x&rft_dat=%3Cproquest_cross%3E3062305331%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3062305331&rft_id=info:pmid/&rfr_iscdi=true