Anti-scattering propagation in multiple-bend valley phononic crystals

Valley topological phononic crystals (PCs) have attracted wide attention due to the topological properties of their edge states. In general, valley interface states can exist in the interfaces that are constructed by opposite valley topological phases. Here we study the anti-scattering propagation p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of physics 2024-05, Vol.26 (5), p.53043
Hauptverfasser: Fan, Xiying, Zhou, Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 53043
container_title New journal of physics
container_volume 26
creator Fan, Xiying
Zhou, Bin
description Valley topological phononic crystals (PCs) have attracted wide attention due to the topological properties of their edge states. In general, valley interface states can exist in the interfaces that are constructed by opposite valley topological phases. Here we study the anti-scattering propagation properties of edge states in a single valley PC. We present that the edge states can exist in different boundary terminations with different band dispersions. The boundary transport behaviors of acoustic waves along the two designed PCs are demonstrated numerically. The results show that the chiral edge states are immune against additional scatterers that preserve the valley pseudospins, but the backscattering can happen when intervalley scattering is included. Nevertheless, the anti-scattering propagation in complex multiple-bend structures can be realized by the smooth transition between the edge states and the valley interface states. Similar to the designed frequency-selective device, more prospective applications can be anticipated in the manipulation of acoustic wave propagation.
doi_str_mv 10.1088/1367-2630/ad4c90
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_3062008740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_74d92b2a480f477d8d4f28397988bf3b</doaj_id><sourcerecordid>3062008740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-3cec85a720aa03fe04c75c65c63851cf0103edc9f43061f9f19ec7abd2fac9273</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhhdRUKt3jwsevLh28rFN9likakHwoueQzUdNWZM1mwr996auVA8iDMwwPPPOzFsUFwhuEHA-RWTGKjwjMJWaqgYOipN96_BXfVycDsMaACGO8UmxmPvkqkHJlEx0flX2MfRyJZMLvnS-fNt0yfWdqVrjdfkhu85sy_41-OCdKlXcDkl2w1lxZHMy5995UrzcLZ5vH6rHp_vl7fyxUoSgVBFlFK8lwyAlEGuAKlarWQ7Ca6QsICBGq8ZSAjNkG4sao5hsNbZSNZiRSbEcdXWQa9FH9ybjVgTpxFcjxJWQMTnVGcGobnCLJeVgKWOaa2oxJw1rOG8tabPW5aiVP37fmCGJddhEn88XeTsG4IxCpmCkVAzDEI3db0UgdsaLnbNi56wYjc8j1-OIC_2P5j_41R-4X_eZErWAmgAloteWfAIFYZEj</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3062008740</pqid></control><display><type>article</type><title>Anti-scattering propagation in multiple-bend valley phononic crystals</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Fan, Xiying ; Zhou, Bin</creator><creatorcontrib>Fan, Xiying ; Zhou, Bin</creatorcontrib><description>Valley topological phononic crystals (PCs) have attracted wide attention due to the topological properties of their edge states. In general, valley interface states can exist in the interfaces that are constructed by opposite valley topological phases. Here we study the anti-scattering propagation properties of edge states in a single valley PC. We present that the edge states can exist in different boundary terminations with different band dispersions. The boundary transport behaviors of acoustic waves along the two designed PCs are demonstrated numerically. The results show that the chiral edge states are immune against additional scatterers that preserve the valley pseudospins, but the backscattering can happen when intervalley scattering is included. Nevertheless, the anti-scattering propagation in complex multiple-bend structures can be realized by the smooth transition between the edge states and the valley interface states. Similar to the designed frequency-selective device, more prospective applications can be anticipated in the manipulation of acoustic wave propagation.</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/ad4c90</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Acoustic propagation ; Acoustic waves ; anti-scattering propagation ; edge state ; Propagation ; Scattering ; Topology ; valley phononic crystal ; Wave propagation</subject><ispartof>New journal of physics, 2024-05, Vol.26 (5), p.53043</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft</rights><rights>2024 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c331t-3cec85a720aa03fe04c75c65c63851cf0103edc9f43061f9f19ec7abd2fac9273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1367-2630/ad4c90/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,860,2096,27901,27902,38845,38867,53815,53842</link.rule.ids></links><search><creatorcontrib>Fan, Xiying</creatorcontrib><creatorcontrib>Zhou, Bin</creatorcontrib><title>Anti-scattering propagation in multiple-bend valley phononic crystals</title><title>New journal of physics</title><addtitle>NJP</addtitle><addtitle>New J. Phys</addtitle><description>Valley topological phononic crystals (PCs) have attracted wide attention due to the topological properties of their edge states. In general, valley interface states can exist in the interfaces that are constructed by opposite valley topological phases. Here we study the anti-scattering propagation properties of edge states in a single valley PC. We present that the edge states can exist in different boundary terminations with different band dispersions. The boundary transport behaviors of acoustic waves along the two designed PCs are demonstrated numerically. The results show that the chiral edge states are immune against additional scatterers that preserve the valley pseudospins, but the backscattering can happen when intervalley scattering is included. Nevertheless, the anti-scattering propagation in complex multiple-bend structures can be realized by the smooth transition between the edge states and the valley interface states. Similar to the designed frequency-selective device, more prospective applications can be anticipated in the manipulation of acoustic wave propagation.</description><subject>Acoustic propagation</subject><subject>Acoustic waves</subject><subject>anti-scattering propagation</subject><subject>edge state</subject><subject>Propagation</subject><subject>Scattering</subject><subject>Topology</subject><subject>valley phononic crystal</subject><subject>Wave propagation</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp9kE1LAzEQhhdRUKt3jwsevLh28rFN9likakHwoueQzUdNWZM1mwr996auVA8iDMwwPPPOzFsUFwhuEHA-RWTGKjwjMJWaqgYOipN96_BXfVycDsMaACGO8UmxmPvkqkHJlEx0flX2MfRyJZMLvnS-fNt0yfWdqVrjdfkhu85sy_41-OCdKlXcDkl2w1lxZHMy5995UrzcLZ5vH6rHp_vl7fyxUoSgVBFlFK8lwyAlEGuAKlarWQ7Ca6QsICBGq8ZSAjNkG4sao5hsNbZSNZiRSbEcdXWQa9FH9ybjVgTpxFcjxJWQMTnVGcGobnCLJeVgKWOaa2oxJw1rOG8tabPW5aiVP37fmCGJddhEn88XeTsG4IxCpmCkVAzDEI3db0UgdsaLnbNi56wYjc8j1-OIC_2P5j_41R-4X_eZErWAmgAloteWfAIFYZEj</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Fan, Xiying</creator><creator>Zhou, Bin</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20240501</creationdate><title>Anti-scattering propagation in multiple-bend valley phononic crystals</title><author>Fan, Xiying ; Zhou, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-3cec85a720aa03fe04c75c65c63851cf0103edc9f43061f9f19ec7abd2fac9273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acoustic propagation</topic><topic>Acoustic waves</topic><topic>anti-scattering propagation</topic><topic>edge state</topic><topic>Propagation</topic><topic>Scattering</topic><topic>Topology</topic><topic>valley phononic crystal</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Xiying</creatorcontrib><creatorcontrib>Zhou, Bin</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Xiying</au><au>Zhou, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anti-scattering propagation in multiple-bend valley phononic crystals</atitle><jtitle>New journal of physics</jtitle><stitle>NJP</stitle><addtitle>New J. Phys</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>26</volume><issue>5</issue><spage>53043</spage><pages>53043-</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><coden>NJOPFM</coden><abstract>Valley topological phononic crystals (PCs) have attracted wide attention due to the topological properties of their edge states. In general, valley interface states can exist in the interfaces that are constructed by opposite valley topological phases. Here we study the anti-scattering propagation properties of edge states in a single valley PC. We present that the edge states can exist in different boundary terminations with different band dispersions. The boundary transport behaviors of acoustic waves along the two designed PCs are demonstrated numerically. The results show that the chiral edge states are immune against additional scatterers that preserve the valley pseudospins, but the backscattering can happen when intervalley scattering is included. Nevertheless, the anti-scattering propagation in complex multiple-bend structures can be realized by the smooth transition between the edge states and the valley interface states. Similar to the designed frequency-selective device, more prospective applications can be anticipated in the manipulation of acoustic wave propagation.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1367-2630/ad4c90</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-2630
ispartof New journal of physics, 2024-05, Vol.26 (5), p.53043
issn 1367-2630
1367-2630
language eng
recordid cdi_proquest_journals_3062008740
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Acoustic propagation
Acoustic waves
anti-scattering propagation
edge state
Propagation
Scattering
Topology
valley phononic crystal
Wave propagation
title Anti-scattering propagation in multiple-bend valley phononic crystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A41%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anti-scattering%20propagation%20in%20multiple-bend%20valley%20phononic%20crystals&rft.jtitle=New%20journal%20of%20physics&rft.au=Fan,%20Xiying&rft.date=2024-05-01&rft.volume=26&rft.issue=5&rft.spage=53043&rft.pages=53043-&rft.issn=1367-2630&rft.eissn=1367-2630&rft.coden=NJOPFM&rft_id=info:doi/10.1088/1367-2630/ad4c90&rft_dat=%3Cproquest_iop_j%3E3062008740%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3062008740&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_74d92b2a480f477d8d4f28397988bf3b&rfr_iscdi=true