Value Iteration-Based Adaptive Fuzzy Backstepping Optimal Control of Modular Robot Manipulators via Integral Reinforcement Learning
An adaptive fuzzy backstepping optimal control method is developed for modular robot manipulators (MRMs) via value iteration (VI). This paper adopts joint torque feedback (JTF) technique to construct subsystem dynamics model, and the state space description is deduced. According to fusion function w...
Gespeichert in:
Veröffentlicht in: | International journal of fuzzy systems 2024-06, Vol.26 (4), p.1347-1363 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1363 |
---|---|
container_issue | 4 |
container_start_page | 1347 |
container_title | International journal of fuzzy systems |
container_volume | 26 |
creator | Dong, Bo Jiang, Hucheng Cui, Yiming Zhu, Xinye An, Tianjiao |
description | An adaptive fuzzy backstepping optimal control method is developed for modular robot manipulators (MRMs) via value iteration (VI). This paper adopts joint torque feedback (JTF) technique to construct subsystem dynamics model, and the state space description is deduced. According to fusion function which contains the error in joint angular velocity and position, the cost function is established. The integral reinforcement learning (IRL) is integrated into the VI algorithm, which solves the optimal tracking control issue without system drift dynamics. For purpose of improving the control effect, the optimal tracking control issue of manipulator can be reconsidered as the optimal compensation issue which adopting the local dynamics information. Then the uncertainty in the model can be compensated by an adaptive fuzzy backstepping compensation controller which is constructed by fuzzy logic system (FLS) and backstepping control method. The optimal compensation control strategy is adopted to deal with the interconnected dynamic coupling (IDC), which contains global information about each joint. Based on the VI algorithm and adaptive dynamic programming (ADP) method, an effective solution of Hamiltonian-Jacobi-Bellman (HJB) equation is presented. According to Lyapunov theorem, the trajectory tracking error is uniformly ultimately bounded (UUB) by using the adaptive fuzzy backstepping optimal control method. Finally, the effectiveness of the proposed method is verified by experiments. |
doi_str_mv | 10.1007/s40815-023-01670-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3061553988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3061553988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-c74e7ff254001f51cd445efb3a17e4f2caae398fc1a9c815445558df2ef73a0f3</originalsourceid><addsrcrecordid>eNp9kM1KAzEURoMoWLQv4CrgOpqfyUxnqcVqoaVQ1G1IMzdldJqMSUawW1_caAV3ri7hfue75CB0wegVo7S6jgWdMEkoF4SysqJEHKERZ3VNBGfsGI2YLDnhRVWfonGM7YYKxkshSzFCn8-6GwDPEwSdWu_IrY7Q4JtG96l9Bzwb9vsPfKvNa0zQ963b4lXe7HSHp96l4DvsLV76Zuh0wGu_8QkvtWv7_E4-RPzeajx3CbYhI2tonfXBwA5cwgvQweXGc3RidRdh_DvP0NPs7nH6QBar-_n0ZkEMr2gipiqgspbLglJmJTNNUUiwG6FZBYXlRmsQ9cQapmuTheStlJPGcrCV0NSKM3R56O2DfxsgJvXih-DySSVoyaTM9CSn-CFlgo8xgFV9yP8NH4pR9e1bHXyr7Fv9-FYiQ-IAxRx2Wwh_1f9QX9HDhXo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3061553988</pqid></control><display><type>article</type><title>Value Iteration-Based Adaptive Fuzzy Backstepping Optimal Control of Modular Robot Manipulators via Integral Reinforcement Learning</title><source>SpringerLink Journals - AutoHoldings</source><creator>Dong, Bo ; Jiang, Hucheng ; Cui, Yiming ; Zhu, Xinye ; An, Tianjiao</creator><creatorcontrib>Dong, Bo ; Jiang, Hucheng ; Cui, Yiming ; Zhu, Xinye ; An, Tianjiao</creatorcontrib><description>An adaptive fuzzy backstepping optimal control method is developed for modular robot manipulators (MRMs) via value iteration (VI). This paper adopts joint torque feedback (JTF) technique to construct subsystem dynamics model, and the state space description is deduced. According to fusion function which contains the error in joint angular velocity and position, the cost function is established. The integral reinforcement learning (IRL) is integrated into the VI algorithm, which solves the optimal tracking control issue without system drift dynamics. For purpose of improving the control effect, the optimal tracking control issue of manipulator can be reconsidered as the optimal compensation issue which adopting the local dynamics information. Then the uncertainty in the model can be compensated by an adaptive fuzzy backstepping compensation controller which is constructed by fuzzy logic system (FLS) and backstepping control method. The optimal compensation control strategy is adopted to deal with the interconnected dynamic coupling (IDC), which contains global information about each joint. Based on the VI algorithm and adaptive dynamic programming (ADP) method, an effective solution of Hamiltonian-Jacobi-Bellman (HJB) equation is presented. According to Lyapunov theorem, the trajectory tracking error is uniformly ultimately bounded (UUB) by using the adaptive fuzzy backstepping optimal control method. Finally, the effectiveness of the proposed method is verified by experiments.</description><identifier>ISSN: 1562-2479</identifier><identifier>EISSN: 2199-3211</identifier><identifier>DOI: 10.1007/s40815-023-01670-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptive algorithms ; Adaptive control ; Angular position ; Angular velocity ; Artificial Intelligence ; Compensation ; Computational Intelligence ; Control algorithms ; Control methods ; Controllers ; Cost function ; Design ; Dynamic programming ; Energy consumption ; Engineering ; Explicit knowledge ; Fuzzy control ; Fuzzy logic ; Fuzzy sets ; Management Science ; Manipulators ; Methods ; Neural networks ; Operations Research ; Optimal control ; Robot arms ; Robot control ; Robots ; Subsystems ; Tracking control ; Tracking errors ; Work environment</subject><ispartof>International journal of fuzzy systems, 2024-06, Vol.26 (4), p.1347-1363</ispartof><rights>The Author(s) under exclusive licence to Taiwan Fuzzy Systems Association 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-c74e7ff254001f51cd445efb3a17e4f2caae398fc1a9c815445558df2ef73a0f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40815-023-01670-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40815-023-01670-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Dong, Bo</creatorcontrib><creatorcontrib>Jiang, Hucheng</creatorcontrib><creatorcontrib>Cui, Yiming</creatorcontrib><creatorcontrib>Zhu, Xinye</creatorcontrib><creatorcontrib>An, Tianjiao</creatorcontrib><title>Value Iteration-Based Adaptive Fuzzy Backstepping Optimal Control of Modular Robot Manipulators via Integral Reinforcement Learning</title><title>International journal of fuzzy systems</title><addtitle>Int. J. Fuzzy Syst</addtitle><description>An adaptive fuzzy backstepping optimal control method is developed for modular robot manipulators (MRMs) via value iteration (VI). This paper adopts joint torque feedback (JTF) technique to construct subsystem dynamics model, and the state space description is deduced. According to fusion function which contains the error in joint angular velocity and position, the cost function is established. The integral reinforcement learning (IRL) is integrated into the VI algorithm, which solves the optimal tracking control issue without system drift dynamics. For purpose of improving the control effect, the optimal tracking control issue of manipulator can be reconsidered as the optimal compensation issue which adopting the local dynamics information. Then the uncertainty in the model can be compensated by an adaptive fuzzy backstepping compensation controller which is constructed by fuzzy logic system (FLS) and backstepping control method. The optimal compensation control strategy is adopted to deal with the interconnected dynamic coupling (IDC), which contains global information about each joint. Based on the VI algorithm and adaptive dynamic programming (ADP) method, an effective solution of Hamiltonian-Jacobi-Bellman (HJB) equation is presented. According to Lyapunov theorem, the trajectory tracking error is uniformly ultimately bounded (UUB) by using the adaptive fuzzy backstepping optimal control method. Finally, the effectiveness of the proposed method is verified by experiments.</description><subject>Adaptive algorithms</subject><subject>Adaptive control</subject><subject>Angular position</subject><subject>Angular velocity</subject><subject>Artificial Intelligence</subject><subject>Compensation</subject><subject>Computational Intelligence</subject><subject>Control algorithms</subject><subject>Control methods</subject><subject>Controllers</subject><subject>Cost function</subject><subject>Design</subject><subject>Dynamic programming</subject><subject>Energy consumption</subject><subject>Engineering</subject><subject>Explicit knowledge</subject><subject>Fuzzy control</subject><subject>Fuzzy logic</subject><subject>Fuzzy sets</subject><subject>Management Science</subject><subject>Manipulators</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Operations Research</subject><subject>Optimal control</subject><subject>Robot arms</subject><subject>Robot control</subject><subject>Robots</subject><subject>Subsystems</subject><subject>Tracking control</subject><subject>Tracking errors</subject><subject>Work environment</subject><issn>1562-2479</issn><issn>2199-3211</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEURoMoWLQv4CrgOpqfyUxnqcVqoaVQ1G1IMzdldJqMSUawW1_caAV3ri7hfue75CB0wegVo7S6jgWdMEkoF4SysqJEHKERZ3VNBGfsGI2YLDnhRVWfonGM7YYKxkshSzFCn8-6GwDPEwSdWu_IrY7Q4JtG96l9Bzwb9vsPfKvNa0zQ963b4lXe7HSHp96l4DvsLV76Zuh0wGu_8QkvtWv7_E4-RPzeajx3CbYhI2tonfXBwA5cwgvQweXGc3RidRdh_DvP0NPs7nH6QBar-_n0ZkEMr2gipiqgspbLglJmJTNNUUiwG6FZBYXlRmsQ9cQapmuTheStlJPGcrCV0NSKM3R56O2DfxsgJvXih-DySSVoyaTM9CSn-CFlgo8xgFV9yP8NH4pR9e1bHXyr7Fv9-FYiQ-IAxRx2Wwh_1f9QX9HDhXo</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Dong, Bo</creator><creator>Jiang, Hucheng</creator><creator>Cui, Yiming</creator><creator>Zhu, Xinye</creator><creator>An, Tianjiao</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20240601</creationdate><title>Value Iteration-Based Adaptive Fuzzy Backstepping Optimal Control of Modular Robot Manipulators via Integral Reinforcement Learning</title><author>Dong, Bo ; Jiang, Hucheng ; Cui, Yiming ; Zhu, Xinye ; An, Tianjiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-c74e7ff254001f51cd445efb3a17e4f2caae398fc1a9c815445558df2ef73a0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive algorithms</topic><topic>Adaptive control</topic><topic>Angular position</topic><topic>Angular velocity</topic><topic>Artificial Intelligence</topic><topic>Compensation</topic><topic>Computational Intelligence</topic><topic>Control algorithms</topic><topic>Control methods</topic><topic>Controllers</topic><topic>Cost function</topic><topic>Design</topic><topic>Dynamic programming</topic><topic>Energy consumption</topic><topic>Engineering</topic><topic>Explicit knowledge</topic><topic>Fuzzy control</topic><topic>Fuzzy logic</topic><topic>Fuzzy sets</topic><topic>Management Science</topic><topic>Manipulators</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Operations Research</topic><topic>Optimal control</topic><topic>Robot arms</topic><topic>Robot control</topic><topic>Robots</topic><topic>Subsystems</topic><topic>Tracking control</topic><topic>Tracking errors</topic><topic>Work environment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Bo</creatorcontrib><creatorcontrib>Jiang, Hucheng</creatorcontrib><creatorcontrib>Cui, Yiming</creatorcontrib><creatorcontrib>Zhu, Xinye</creatorcontrib><creatorcontrib>An, Tianjiao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>International journal of fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Bo</au><au>Jiang, Hucheng</au><au>Cui, Yiming</au><au>Zhu, Xinye</au><au>An, Tianjiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Value Iteration-Based Adaptive Fuzzy Backstepping Optimal Control of Modular Robot Manipulators via Integral Reinforcement Learning</atitle><jtitle>International journal of fuzzy systems</jtitle><stitle>Int. J. Fuzzy Syst</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>26</volume><issue>4</issue><spage>1347</spage><epage>1363</epage><pages>1347-1363</pages><issn>1562-2479</issn><eissn>2199-3211</eissn><abstract>An adaptive fuzzy backstepping optimal control method is developed for modular robot manipulators (MRMs) via value iteration (VI). This paper adopts joint torque feedback (JTF) technique to construct subsystem dynamics model, and the state space description is deduced. According to fusion function which contains the error in joint angular velocity and position, the cost function is established. The integral reinforcement learning (IRL) is integrated into the VI algorithm, which solves the optimal tracking control issue without system drift dynamics. For purpose of improving the control effect, the optimal tracking control issue of manipulator can be reconsidered as the optimal compensation issue which adopting the local dynamics information. Then the uncertainty in the model can be compensated by an adaptive fuzzy backstepping compensation controller which is constructed by fuzzy logic system (FLS) and backstepping control method. The optimal compensation control strategy is adopted to deal with the interconnected dynamic coupling (IDC), which contains global information about each joint. Based on the VI algorithm and adaptive dynamic programming (ADP) method, an effective solution of Hamiltonian-Jacobi-Bellman (HJB) equation is presented. According to Lyapunov theorem, the trajectory tracking error is uniformly ultimately bounded (UUB) by using the adaptive fuzzy backstepping optimal control method. Finally, the effectiveness of the proposed method is verified by experiments.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40815-023-01670-3</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1562-2479 |
ispartof | International journal of fuzzy systems, 2024-06, Vol.26 (4), p.1347-1363 |
issn | 1562-2479 2199-3211 |
language | eng |
recordid | cdi_proquest_journals_3061553988 |
source | SpringerLink Journals - AutoHoldings |
subjects | Adaptive algorithms Adaptive control Angular position Angular velocity Artificial Intelligence Compensation Computational Intelligence Control algorithms Control methods Controllers Cost function Design Dynamic programming Energy consumption Engineering Explicit knowledge Fuzzy control Fuzzy logic Fuzzy sets Management Science Manipulators Methods Neural networks Operations Research Optimal control Robot arms Robot control Robots Subsystems Tracking control Tracking errors Work environment |
title | Value Iteration-Based Adaptive Fuzzy Backstepping Optimal Control of Modular Robot Manipulators via Integral Reinforcement Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A14%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Value%20Iteration-Based%20Adaptive%20Fuzzy%20Backstepping%20Optimal%20Control%20of%20Modular%20Robot%20Manipulators%20via%20Integral%20Reinforcement%20Learning&rft.jtitle=International%20journal%20of%20fuzzy%20systems&rft.au=Dong,%20Bo&rft.date=2024-06-01&rft.volume=26&rft.issue=4&rft.spage=1347&rft.epage=1363&rft.pages=1347-1363&rft.issn=1562-2479&rft.eissn=2199-3211&rft_id=info:doi/10.1007/s40815-023-01670-3&rft_dat=%3Cproquest_cross%3E3061553988%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3061553988&rft_id=info:pmid/&rfr_iscdi=true |