Value Iteration-Based Adaptive Fuzzy Backstepping Optimal Control of Modular Robot Manipulators via Integral Reinforcement Learning

An adaptive fuzzy backstepping optimal control method is developed for modular robot manipulators (MRMs) via value iteration (VI). This paper adopts joint torque feedback (JTF) technique to construct subsystem dynamics model, and the state space description is deduced. According to fusion function w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of fuzzy systems 2024-06, Vol.26 (4), p.1347-1363
Hauptverfasser: Dong, Bo, Jiang, Hucheng, Cui, Yiming, Zhu, Xinye, An, Tianjiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1363
container_issue 4
container_start_page 1347
container_title International journal of fuzzy systems
container_volume 26
creator Dong, Bo
Jiang, Hucheng
Cui, Yiming
Zhu, Xinye
An, Tianjiao
description An adaptive fuzzy backstepping optimal control method is developed for modular robot manipulators (MRMs) via value iteration (VI). This paper adopts joint torque feedback (JTF) technique to construct subsystem dynamics model, and the state space description is deduced. According to fusion function which contains the error in joint angular velocity and position, the cost function is established. The integral reinforcement learning (IRL) is integrated into the VI algorithm, which solves the optimal tracking control issue without system drift dynamics. For purpose of improving the control effect, the optimal tracking control issue of manipulator can be reconsidered as the optimal compensation issue which adopting the local dynamics information. Then the uncertainty in the model can be compensated by an adaptive fuzzy backstepping compensation controller which is constructed by fuzzy logic system (FLS) and backstepping control method. The optimal compensation control strategy is adopted to deal with the interconnected dynamic coupling (IDC), which contains global information about each joint. Based on the VI algorithm and adaptive dynamic programming (ADP) method, an effective solution of Hamiltonian-Jacobi-Bellman (HJB) equation is presented. According to Lyapunov theorem, the trajectory tracking error is uniformly ultimately bounded (UUB) by using the adaptive fuzzy backstepping optimal control method. Finally, the effectiveness of the proposed method is verified by experiments.
doi_str_mv 10.1007/s40815-023-01670-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3061553988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3061553988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-c74e7ff254001f51cd445efb3a17e4f2caae398fc1a9c815445558df2ef73a0f3</originalsourceid><addsrcrecordid>eNp9kM1KAzEURoMoWLQv4CrgOpqfyUxnqcVqoaVQ1G1IMzdldJqMSUawW1_caAV3ri7hfue75CB0wegVo7S6jgWdMEkoF4SysqJEHKERZ3VNBGfsGI2YLDnhRVWfonGM7YYKxkshSzFCn8-6GwDPEwSdWu_IrY7Q4JtG96l9Bzwb9vsPfKvNa0zQ963b4lXe7HSHp96l4DvsLV76Zuh0wGu_8QkvtWv7_E4-RPzeajx3CbYhI2tonfXBwA5cwgvQweXGc3RidRdh_DvP0NPs7nH6QBar-_n0ZkEMr2gipiqgspbLglJmJTNNUUiwG6FZBYXlRmsQ9cQapmuTheStlJPGcrCV0NSKM3R56O2DfxsgJvXih-DySSVoyaTM9CSn-CFlgo8xgFV9yP8NH4pR9e1bHXyr7Fv9-FYiQ-IAxRx2Wwh_1f9QX9HDhXo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3061553988</pqid></control><display><type>article</type><title>Value Iteration-Based Adaptive Fuzzy Backstepping Optimal Control of Modular Robot Manipulators via Integral Reinforcement Learning</title><source>SpringerLink Journals - AutoHoldings</source><creator>Dong, Bo ; Jiang, Hucheng ; Cui, Yiming ; Zhu, Xinye ; An, Tianjiao</creator><creatorcontrib>Dong, Bo ; Jiang, Hucheng ; Cui, Yiming ; Zhu, Xinye ; An, Tianjiao</creatorcontrib><description>An adaptive fuzzy backstepping optimal control method is developed for modular robot manipulators (MRMs) via value iteration (VI). This paper adopts joint torque feedback (JTF) technique to construct subsystem dynamics model, and the state space description is deduced. According to fusion function which contains the error in joint angular velocity and position, the cost function is established. The integral reinforcement learning (IRL) is integrated into the VI algorithm, which solves the optimal tracking control issue without system drift dynamics. For purpose of improving the control effect, the optimal tracking control issue of manipulator can be reconsidered as the optimal compensation issue which adopting the local dynamics information. Then the uncertainty in the model can be compensated by an adaptive fuzzy backstepping compensation controller which is constructed by fuzzy logic system (FLS) and backstepping control method. The optimal compensation control strategy is adopted to deal with the interconnected dynamic coupling (IDC), which contains global information about each joint. Based on the VI algorithm and adaptive dynamic programming (ADP) method, an effective solution of Hamiltonian-Jacobi-Bellman (HJB) equation is presented. According to Lyapunov theorem, the trajectory tracking error is uniformly ultimately bounded (UUB) by using the adaptive fuzzy backstepping optimal control method. Finally, the effectiveness of the proposed method is verified by experiments.</description><identifier>ISSN: 1562-2479</identifier><identifier>EISSN: 2199-3211</identifier><identifier>DOI: 10.1007/s40815-023-01670-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptive algorithms ; Adaptive control ; Angular position ; Angular velocity ; Artificial Intelligence ; Compensation ; Computational Intelligence ; Control algorithms ; Control methods ; Controllers ; Cost function ; Design ; Dynamic programming ; Energy consumption ; Engineering ; Explicit knowledge ; Fuzzy control ; Fuzzy logic ; Fuzzy sets ; Management Science ; Manipulators ; Methods ; Neural networks ; Operations Research ; Optimal control ; Robot arms ; Robot control ; Robots ; Subsystems ; Tracking control ; Tracking errors ; Work environment</subject><ispartof>International journal of fuzzy systems, 2024-06, Vol.26 (4), p.1347-1363</ispartof><rights>The Author(s) under exclusive licence to Taiwan Fuzzy Systems Association 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-c74e7ff254001f51cd445efb3a17e4f2caae398fc1a9c815445558df2ef73a0f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40815-023-01670-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40815-023-01670-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Dong, Bo</creatorcontrib><creatorcontrib>Jiang, Hucheng</creatorcontrib><creatorcontrib>Cui, Yiming</creatorcontrib><creatorcontrib>Zhu, Xinye</creatorcontrib><creatorcontrib>An, Tianjiao</creatorcontrib><title>Value Iteration-Based Adaptive Fuzzy Backstepping Optimal Control of Modular Robot Manipulators via Integral Reinforcement Learning</title><title>International journal of fuzzy systems</title><addtitle>Int. J. Fuzzy Syst</addtitle><description>An adaptive fuzzy backstepping optimal control method is developed for modular robot manipulators (MRMs) via value iteration (VI). This paper adopts joint torque feedback (JTF) technique to construct subsystem dynamics model, and the state space description is deduced. According to fusion function which contains the error in joint angular velocity and position, the cost function is established. The integral reinforcement learning (IRL) is integrated into the VI algorithm, which solves the optimal tracking control issue without system drift dynamics. For purpose of improving the control effect, the optimal tracking control issue of manipulator can be reconsidered as the optimal compensation issue which adopting the local dynamics information. Then the uncertainty in the model can be compensated by an adaptive fuzzy backstepping compensation controller which is constructed by fuzzy logic system (FLS) and backstepping control method. The optimal compensation control strategy is adopted to deal with the interconnected dynamic coupling (IDC), which contains global information about each joint. Based on the VI algorithm and adaptive dynamic programming (ADP) method, an effective solution of Hamiltonian-Jacobi-Bellman (HJB) equation is presented. According to Lyapunov theorem, the trajectory tracking error is uniformly ultimately bounded (UUB) by using the adaptive fuzzy backstepping optimal control method. Finally, the effectiveness of the proposed method is verified by experiments.</description><subject>Adaptive algorithms</subject><subject>Adaptive control</subject><subject>Angular position</subject><subject>Angular velocity</subject><subject>Artificial Intelligence</subject><subject>Compensation</subject><subject>Computational Intelligence</subject><subject>Control algorithms</subject><subject>Control methods</subject><subject>Controllers</subject><subject>Cost function</subject><subject>Design</subject><subject>Dynamic programming</subject><subject>Energy consumption</subject><subject>Engineering</subject><subject>Explicit knowledge</subject><subject>Fuzzy control</subject><subject>Fuzzy logic</subject><subject>Fuzzy sets</subject><subject>Management Science</subject><subject>Manipulators</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Operations Research</subject><subject>Optimal control</subject><subject>Robot arms</subject><subject>Robot control</subject><subject>Robots</subject><subject>Subsystems</subject><subject>Tracking control</subject><subject>Tracking errors</subject><subject>Work environment</subject><issn>1562-2479</issn><issn>2199-3211</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEURoMoWLQv4CrgOpqfyUxnqcVqoaVQ1G1IMzdldJqMSUawW1_caAV3ri7hfue75CB0wegVo7S6jgWdMEkoF4SysqJEHKERZ3VNBGfsGI2YLDnhRVWfonGM7YYKxkshSzFCn8-6GwDPEwSdWu_IrY7Q4JtG96l9Bzwb9vsPfKvNa0zQ963b4lXe7HSHp96l4DvsLV76Zuh0wGu_8QkvtWv7_E4-RPzeajx3CbYhI2tonfXBwA5cwgvQweXGc3RidRdh_DvP0NPs7nH6QBar-_n0ZkEMr2gipiqgspbLglJmJTNNUUiwG6FZBYXlRmsQ9cQapmuTheStlJPGcrCV0NSKM3R56O2DfxsgJvXih-DySSVoyaTM9CSn-CFlgo8xgFV9yP8NH4pR9e1bHXyr7Fv9-FYiQ-IAxRx2Wwh_1f9QX9HDhXo</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Dong, Bo</creator><creator>Jiang, Hucheng</creator><creator>Cui, Yiming</creator><creator>Zhu, Xinye</creator><creator>An, Tianjiao</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20240601</creationdate><title>Value Iteration-Based Adaptive Fuzzy Backstepping Optimal Control of Modular Robot Manipulators via Integral Reinforcement Learning</title><author>Dong, Bo ; Jiang, Hucheng ; Cui, Yiming ; Zhu, Xinye ; An, Tianjiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-c74e7ff254001f51cd445efb3a17e4f2caae398fc1a9c815445558df2ef73a0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive algorithms</topic><topic>Adaptive control</topic><topic>Angular position</topic><topic>Angular velocity</topic><topic>Artificial Intelligence</topic><topic>Compensation</topic><topic>Computational Intelligence</topic><topic>Control algorithms</topic><topic>Control methods</topic><topic>Controllers</topic><topic>Cost function</topic><topic>Design</topic><topic>Dynamic programming</topic><topic>Energy consumption</topic><topic>Engineering</topic><topic>Explicit knowledge</topic><topic>Fuzzy control</topic><topic>Fuzzy logic</topic><topic>Fuzzy sets</topic><topic>Management Science</topic><topic>Manipulators</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Operations Research</topic><topic>Optimal control</topic><topic>Robot arms</topic><topic>Robot control</topic><topic>Robots</topic><topic>Subsystems</topic><topic>Tracking control</topic><topic>Tracking errors</topic><topic>Work environment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Bo</creatorcontrib><creatorcontrib>Jiang, Hucheng</creatorcontrib><creatorcontrib>Cui, Yiming</creatorcontrib><creatorcontrib>Zhu, Xinye</creatorcontrib><creatorcontrib>An, Tianjiao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>International journal of fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Bo</au><au>Jiang, Hucheng</au><au>Cui, Yiming</au><au>Zhu, Xinye</au><au>An, Tianjiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Value Iteration-Based Adaptive Fuzzy Backstepping Optimal Control of Modular Robot Manipulators via Integral Reinforcement Learning</atitle><jtitle>International journal of fuzzy systems</jtitle><stitle>Int. J. Fuzzy Syst</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>26</volume><issue>4</issue><spage>1347</spage><epage>1363</epage><pages>1347-1363</pages><issn>1562-2479</issn><eissn>2199-3211</eissn><abstract>An adaptive fuzzy backstepping optimal control method is developed for modular robot manipulators (MRMs) via value iteration (VI). This paper adopts joint torque feedback (JTF) technique to construct subsystem dynamics model, and the state space description is deduced. According to fusion function which contains the error in joint angular velocity and position, the cost function is established. The integral reinforcement learning (IRL) is integrated into the VI algorithm, which solves the optimal tracking control issue without system drift dynamics. For purpose of improving the control effect, the optimal tracking control issue of manipulator can be reconsidered as the optimal compensation issue which adopting the local dynamics information. Then the uncertainty in the model can be compensated by an adaptive fuzzy backstepping compensation controller which is constructed by fuzzy logic system (FLS) and backstepping control method. The optimal compensation control strategy is adopted to deal with the interconnected dynamic coupling (IDC), which contains global information about each joint. Based on the VI algorithm and adaptive dynamic programming (ADP) method, an effective solution of Hamiltonian-Jacobi-Bellman (HJB) equation is presented. According to Lyapunov theorem, the trajectory tracking error is uniformly ultimately bounded (UUB) by using the adaptive fuzzy backstepping optimal control method. Finally, the effectiveness of the proposed method is verified by experiments.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40815-023-01670-3</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1562-2479
ispartof International journal of fuzzy systems, 2024-06, Vol.26 (4), p.1347-1363
issn 1562-2479
2199-3211
language eng
recordid cdi_proquest_journals_3061553988
source SpringerLink Journals - AutoHoldings
subjects Adaptive algorithms
Adaptive control
Angular position
Angular velocity
Artificial Intelligence
Compensation
Computational Intelligence
Control algorithms
Control methods
Controllers
Cost function
Design
Dynamic programming
Energy consumption
Engineering
Explicit knowledge
Fuzzy control
Fuzzy logic
Fuzzy sets
Management Science
Manipulators
Methods
Neural networks
Operations Research
Optimal control
Robot arms
Robot control
Robots
Subsystems
Tracking control
Tracking errors
Work environment
title Value Iteration-Based Adaptive Fuzzy Backstepping Optimal Control of Modular Robot Manipulators via Integral Reinforcement Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A14%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Value%20Iteration-Based%20Adaptive%20Fuzzy%20Backstepping%20Optimal%20Control%20of%20Modular%20Robot%20Manipulators%20via%20Integral%20Reinforcement%20Learning&rft.jtitle=International%20journal%20of%20fuzzy%20systems&rft.au=Dong,%20Bo&rft.date=2024-06-01&rft.volume=26&rft.issue=4&rft.spage=1347&rft.epage=1363&rft.pages=1347-1363&rft.issn=1562-2479&rft.eissn=2199-3211&rft_id=info:doi/10.1007/s40815-023-01670-3&rft_dat=%3Cproquest_cross%3E3061553988%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3061553988&rft_id=info:pmid/&rfr_iscdi=true