Weight prediction of intensively reared gilthead seabream Sparus aurata from morphometric traits measured in images

The objective of this study was to establish an accurate body weight (BW) prediction model for gilthead seabream Sparus aurata of 50–1000 g. Three thousand three hundred twelve (3312) fish were individually weighed and photographed. Traits measured from the images were total body length (TBL), fork...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aquaculture international 2024-06, Vol.32 (3), p.3675-3687
Hauptverfasser: Karakatsouli, Nafsika, Mavrommati, Marina, Karellou, Eva Iris, Glaropoulos, Alexios, Batzina, Alkisti, Tzokas, Konstantinos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3687
container_issue 3
container_start_page 3675
container_title Aquaculture international
container_volume 32
creator Karakatsouli, Nafsika
Mavrommati, Marina
Karellou, Eva Iris
Glaropoulos, Alexios
Batzina, Alkisti
Tzokas, Konstantinos
description The objective of this study was to establish an accurate body weight (BW) prediction model for gilthead seabream Sparus aurata of 50–1000 g. Three thousand three hundred twelve (3312) fish were individually weighed and photographed. Traits measured from the images were total body length (TBL), fork body length (FBL), standard body length (SBL), body height (BH), head length (HL), eye diameter (ED), body area (BA, without fins), head area (HA), and eye area (EA). SBL, BH, BA, BA/SBL, and BA/BH showed a strong association with BW (correlation coefficients, r : 0.96–0.99). These traits were selected to proceed with the regression analysis. Simple, multiple linear, and 2nd-order polynomial regressions were applied to the whole data set and three BW subgroups of interest during gilthead seabream rearing (i.e., 50–100 g, 100–500 g, 500–1000 g). The prediction of BW from the whole data set was more accurate than from each BW subgroup. The models with the highest coefficient of determination ( R 2 ) and the lowest errors (mean absolute percentage error, MAPE) were either the power regression of BW with BA ( R 2 : 99.0%, MAPE: 5.8%) or the multiple linear regression of BW with SBL, BA, BA/SBL, and BA/BH ( R 2 : 98.6%, MAPE: 5.1%) as predictors. The accuracy of the two models is considered quite similar, and for reasons of simplicity, the power regression is advantageous, requiring only one trait to be measured (BA). The models identified in the present study can help to further develop the accuracy of machine vision-based systems for gilthead seabream BW measurement.
doi_str_mv 10.1007/s10499-023-01343-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3061540460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3061540460</sourcerecordid><originalsourceid>FETCH-LOGICAL-c229w-ba30ec9d774736a1c196f80ee9f8031a86cc9d37f2cba2bc68fa08866c6d4aeb3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPA8-pks83uHqX4BQUPKnoLs-nsNqX7YZK19N-bWsGblxmYed93hoexSwHXAiC_8QKyskwglQkImclke8QmYpbLRGTy45hNoFR5okQKp-zM-zUAyDwTE-bfyTarwAdHS2uC7Tve19x2gTpvv2iz444w7nhjN2FFuOSesIqzlr8M6EbPcXQYkNeub3nbu2HVtxScNTw4tMHzltCP-wTbcdtiQ_6cndS48XTx26fs7f7udf6YLJ4fnua3i8SkablNKpRAplzmeZZLhcKIUtUFEJWxSoGFMnEr8zo1FaaVUUWNUBRKGbXMkCo5ZVeH3MH1nyP5oNf96Lp4UktQYpZBpiCq0oPKuN57R7UeXPzT7bQAvYerD3B1hKt_4OptNMmDyUdx15D7i_7H9Q3G94CS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3061540460</pqid></control><display><type>article</type><title>Weight prediction of intensively reared gilthead seabream Sparus aurata from morphometric traits measured in images</title><source>SpringerNature Journals</source><creator>Karakatsouli, Nafsika ; Mavrommati, Marina ; Karellou, Eva Iris ; Glaropoulos, Alexios ; Batzina, Alkisti ; Tzokas, Konstantinos</creator><creatorcontrib>Karakatsouli, Nafsika ; Mavrommati, Marina ; Karellou, Eva Iris ; Glaropoulos, Alexios ; Batzina, Alkisti ; Tzokas, Konstantinos</creatorcontrib><description>The objective of this study was to establish an accurate body weight (BW) prediction model for gilthead seabream Sparus aurata of 50–1000 g. Three thousand three hundred twelve (3312) fish were individually weighed and photographed. Traits measured from the images were total body length (TBL), fork body length (FBL), standard body length (SBL), body height (BH), head length (HL), eye diameter (ED), body area (BA, without fins), head area (HA), and eye area (EA). SBL, BH, BA, BA/SBL, and BA/BH showed a strong association with BW (correlation coefficients, r : 0.96–0.99). These traits were selected to proceed with the regression analysis. Simple, multiple linear, and 2nd-order polynomial regressions were applied to the whole data set and three BW subgroups of interest during gilthead seabream rearing (i.e., 50–100 g, 100–500 g, 500–1000 g). The prediction of BW from the whole data set was more accurate than from each BW subgroup. The models with the highest coefficient of determination ( R 2 ) and the lowest errors (mean absolute percentage error, MAPE) were either the power regression of BW with BA ( R 2 : 99.0%, MAPE: 5.8%) or the multiple linear regression of BW with SBL, BA, BA/SBL, and BA/BH ( R 2 : 98.6%, MAPE: 5.1%) as predictors. The accuracy of the two models is considered quite similar, and for reasons of simplicity, the power regression is advantageous, requiring only one trait to be measured (BA). The models identified in the present study can help to further develop the accuracy of machine vision-based systems for gilthead seabream BW measurement.</description><identifier>ISSN: 0967-6120</identifier><identifier>EISSN: 1573-143X</identifier><identifier>DOI: 10.1007/s10499-023-01343-w</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Accuracy ; Aquaculture ; Biomedical and Life Sciences ; Body height ; Body weight ; Catfish ; Correlation coefficient ; Fins ; Fish ; Freshwater &amp; Marine Ecology ; Head ; Life Sciences ; Marine fishes ; Morphometry ; Prediction models ; Regression analysis ; Sparus aurata ; Tilapia ; Zoology</subject><ispartof>Aquaculture international, 2024-06, Vol.32 (3), p.3675-3687</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c229w-ba30ec9d774736a1c196f80ee9f8031a86cc9d37f2cba2bc68fa08866c6d4aeb3</cites><orcidid>0000-0002-1411-9585</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10499-023-01343-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10499-023-01343-w$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Karakatsouli, Nafsika</creatorcontrib><creatorcontrib>Mavrommati, Marina</creatorcontrib><creatorcontrib>Karellou, Eva Iris</creatorcontrib><creatorcontrib>Glaropoulos, Alexios</creatorcontrib><creatorcontrib>Batzina, Alkisti</creatorcontrib><creatorcontrib>Tzokas, Konstantinos</creatorcontrib><title>Weight prediction of intensively reared gilthead seabream Sparus aurata from morphometric traits measured in images</title><title>Aquaculture international</title><addtitle>Aquacult Int</addtitle><description>The objective of this study was to establish an accurate body weight (BW) prediction model for gilthead seabream Sparus aurata of 50–1000 g. Three thousand three hundred twelve (3312) fish were individually weighed and photographed. Traits measured from the images were total body length (TBL), fork body length (FBL), standard body length (SBL), body height (BH), head length (HL), eye diameter (ED), body area (BA, without fins), head area (HA), and eye area (EA). SBL, BH, BA, BA/SBL, and BA/BH showed a strong association with BW (correlation coefficients, r : 0.96–0.99). These traits were selected to proceed with the regression analysis. Simple, multiple linear, and 2nd-order polynomial regressions were applied to the whole data set and three BW subgroups of interest during gilthead seabream rearing (i.e., 50–100 g, 100–500 g, 500–1000 g). The prediction of BW from the whole data set was more accurate than from each BW subgroup. The models with the highest coefficient of determination ( R 2 ) and the lowest errors (mean absolute percentage error, MAPE) were either the power regression of BW with BA ( R 2 : 99.0%, MAPE: 5.8%) or the multiple linear regression of BW with SBL, BA, BA/SBL, and BA/BH ( R 2 : 98.6%, MAPE: 5.1%) as predictors. The accuracy of the two models is considered quite similar, and for reasons of simplicity, the power regression is advantageous, requiring only one trait to be measured (BA). The models identified in the present study can help to further develop the accuracy of machine vision-based systems for gilthead seabream BW measurement.</description><subject>Accuracy</subject><subject>Aquaculture</subject><subject>Biomedical and Life Sciences</subject><subject>Body height</subject><subject>Body weight</subject><subject>Catfish</subject><subject>Correlation coefficient</subject><subject>Fins</subject><subject>Fish</subject><subject>Freshwater &amp; Marine Ecology</subject><subject>Head</subject><subject>Life Sciences</subject><subject>Marine fishes</subject><subject>Morphometry</subject><subject>Prediction models</subject><subject>Regression analysis</subject><subject>Sparus aurata</subject><subject>Tilapia</subject><subject>Zoology</subject><issn>0967-6120</issn><issn>1573-143X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPA8-pks83uHqX4BQUPKnoLs-nsNqX7YZK19N-bWsGblxmYed93hoexSwHXAiC_8QKyskwglQkImclke8QmYpbLRGTy45hNoFR5okQKp-zM-zUAyDwTE-bfyTarwAdHS2uC7Tve19x2gTpvv2iz444w7nhjN2FFuOSesIqzlr8M6EbPcXQYkNeub3nbu2HVtxScNTw4tMHzltCP-wTbcdtiQ_6cndS48XTx26fs7f7udf6YLJ4fnua3i8SkablNKpRAplzmeZZLhcKIUtUFEJWxSoGFMnEr8zo1FaaVUUWNUBRKGbXMkCo5ZVeH3MH1nyP5oNf96Lp4UktQYpZBpiCq0oPKuN57R7UeXPzT7bQAvYerD3B1hKt_4OptNMmDyUdx15D7i_7H9Q3G94CS</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Karakatsouli, Nafsika</creator><creator>Mavrommati, Marina</creator><creator>Karellou, Eva Iris</creator><creator>Glaropoulos, Alexios</creator><creator>Batzina, Alkisti</creator><creator>Tzokas, Konstantinos</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H95</scope><scope>H98</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0002-1411-9585</orcidid></search><sort><creationdate>20240601</creationdate><title>Weight prediction of intensively reared gilthead seabream Sparus aurata from morphometric traits measured in images</title><author>Karakatsouli, Nafsika ; Mavrommati, Marina ; Karellou, Eva Iris ; Glaropoulos, Alexios ; Batzina, Alkisti ; Tzokas, Konstantinos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c229w-ba30ec9d774736a1c196f80ee9f8031a86cc9d37f2cba2bc68fa08866c6d4aeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Aquaculture</topic><topic>Biomedical and Life Sciences</topic><topic>Body height</topic><topic>Body weight</topic><topic>Catfish</topic><topic>Correlation coefficient</topic><topic>Fins</topic><topic>Fish</topic><topic>Freshwater &amp; Marine Ecology</topic><topic>Head</topic><topic>Life Sciences</topic><topic>Marine fishes</topic><topic>Morphometry</topic><topic>Prediction models</topic><topic>Regression analysis</topic><topic>Sparus aurata</topic><topic>Tilapia</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karakatsouli, Nafsika</creatorcontrib><creatorcontrib>Mavrommati, Marina</creatorcontrib><creatorcontrib>Karellou, Eva Iris</creatorcontrib><creatorcontrib>Glaropoulos, Alexios</creatorcontrib><creatorcontrib>Batzina, Alkisti</creatorcontrib><creatorcontrib>Tzokas, Konstantinos</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Aquaculture international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karakatsouli, Nafsika</au><au>Mavrommati, Marina</au><au>Karellou, Eva Iris</au><au>Glaropoulos, Alexios</au><au>Batzina, Alkisti</au><au>Tzokas, Konstantinos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weight prediction of intensively reared gilthead seabream Sparus aurata from morphometric traits measured in images</atitle><jtitle>Aquaculture international</jtitle><stitle>Aquacult Int</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>32</volume><issue>3</issue><spage>3675</spage><epage>3687</epage><pages>3675-3687</pages><issn>0967-6120</issn><eissn>1573-143X</eissn><abstract>The objective of this study was to establish an accurate body weight (BW) prediction model for gilthead seabream Sparus aurata of 50–1000 g. Three thousand three hundred twelve (3312) fish were individually weighed and photographed. Traits measured from the images were total body length (TBL), fork body length (FBL), standard body length (SBL), body height (BH), head length (HL), eye diameter (ED), body area (BA, without fins), head area (HA), and eye area (EA). SBL, BH, BA, BA/SBL, and BA/BH showed a strong association with BW (correlation coefficients, r : 0.96–0.99). These traits were selected to proceed with the regression analysis. Simple, multiple linear, and 2nd-order polynomial regressions were applied to the whole data set and three BW subgroups of interest during gilthead seabream rearing (i.e., 50–100 g, 100–500 g, 500–1000 g). The prediction of BW from the whole data set was more accurate than from each BW subgroup. The models with the highest coefficient of determination ( R 2 ) and the lowest errors (mean absolute percentage error, MAPE) were either the power regression of BW with BA ( R 2 : 99.0%, MAPE: 5.8%) or the multiple linear regression of BW with SBL, BA, BA/SBL, and BA/BH ( R 2 : 98.6%, MAPE: 5.1%) as predictors. The accuracy of the two models is considered quite similar, and for reasons of simplicity, the power regression is advantageous, requiring only one trait to be measured (BA). The models identified in the present study can help to further develop the accuracy of machine vision-based systems for gilthead seabream BW measurement.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10499-023-01343-w</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1411-9585</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0967-6120
ispartof Aquaculture international, 2024-06, Vol.32 (3), p.3675-3687
issn 0967-6120
1573-143X
language eng
recordid cdi_proquest_journals_3061540460
source SpringerNature Journals
subjects Accuracy
Aquaculture
Biomedical and Life Sciences
Body height
Body weight
Catfish
Correlation coefficient
Fins
Fish
Freshwater & Marine Ecology
Head
Life Sciences
Marine fishes
Morphometry
Prediction models
Regression analysis
Sparus aurata
Tilapia
Zoology
title Weight prediction of intensively reared gilthead seabream Sparus aurata from morphometric traits measured in images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T17%3A52%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weight%20prediction%20of%20intensively%20reared%20gilthead%20seabream%20Sparus%20aurata%20from%20morphometric%20traits%20measured%20in%20images&rft.jtitle=Aquaculture%20international&rft.au=Karakatsouli,%20Nafsika&rft.date=2024-06-01&rft.volume=32&rft.issue=3&rft.spage=3675&rft.epage=3687&rft.pages=3675-3687&rft.issn=0967-6120&rft.eissn=1573-143X&rft_id=info:doi/10.1007/s10499-023-01343-w&rft_dat=%3Cproquest_cross%3E3061540460%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3061540460&rft_id=info:pmid/&rfr_iscdi=true