Optimal Control for Mobile Agents Considering State Unpredictability

This article studies the optimal control for mobile agents, aiming at achieving a tradeoff between the control performance and state unpredictability over a long time horizon. The main challenge lies in incorporating the state unpredictability requirement into the optimization problem and generalizi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2024-06, Vol.69 (6), p.3944-3951
Hauptverfasser: Qu, Chendi, He, Jianping, Li, Jialun, Duan, Xiaoming, Mo, Yilin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article studies the optimal control for mobile agents, aiming at achieving a tradeoff between the control performance and state unpredictability over a long time horizon. The main challenge lies in incorporating the state unpredictability requirement into the optimization problem and generalizing the algorithm to various models. Utilizing random perturbations to maximize the attackers' prediction errors of future states, we formulate the problem as a multiperiod convex stochastic optimization problem and solve it via dynamic programming. We design the State unPredictable Optimal Control algorithm for both unconstrained and input-constrained systems. Moreover, we extend the algorithm to nonlinear affine systems by linearization. The analytical iterative expressions of the control inputs are further provided. Simulation illustrates that the algorithm increases the prediction errors under Kalman filter while satisfying the control performance requirements successfully.
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2023.3343818