FPGA Implementation of Elliptic-Curve Point Multiplication Over GF(2233) Using Booth Polynomial Multiplier for Area-Sensitive Applications

This article presents an area-efficient hardware architecture for the implementation of elliptic-curve point multiplication (PM) operation over GF(2^{233}) . The area is minimized through three strategies: 1) implementing a bit-serial-based Booth polynomial multiplication architecture to multiply t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.72847-72859
Hauptverfasser: Aljaedi, Amer, Qureshi, Furqan Aziz, Hazzazi, Mohammad Mazyad, Imran, Malik, Bassfar, Zaid, Jamal, Sajjad Shaukat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 72859
container_issue
container_start_page 72847
container_title IEEE access
container_volume 12
creator Aljaedi, Amer
Qureshi, Furqan Aziz
Hazzazi, Mohammad Mazyad
Imran, Malik
Bassfar, Zaid
Jamal, Sajjad Shaukat
description This article presents an area-efficient hardware architecture for the implementation of elliptic-curve point multiplication (PM) operation over GF(2^{233}) . The area is minimized through three strategies: 1) implementing a bit-serial-based Booth polynomial multiplication architecture to multiply two polynomials with clock cycles overhead, 2) using one modular adder, Booth multiplier and square block in the arithmetic unit, and 3) realizing the modular inversion computation using the implemented square and Booth multiplier circuits. Moreover, the critical path is evaluated by the placement of registers in the datapath of the PM and Booth multiplier architectures. Moreover, a dedicated finite-state machine is implemented for control functionalities. Finally, a figure-of-merit (FoM), defined as throughput/area, facilitates realistic comparisons. The implementation results are reported on Xilinx field-programmable gate array (FPGA) devices. On the Virtex-7 device, our accelerator utilizes 1343 slices and can operate on a maximum of 393MHz , requiring 174457 clock cycles and 443.91\mu s for one PM computation. It consumes 1361mW power. The implementation results and comparison to state-of-the-art show that the proposed accelerator is suitable for cryptographic applications that demand lower hardware resource utilization without significant concerns regarding computation time.
doi_str_mv 10.1109/ACCESS.2024.3403771
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_3061458965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10535481</ieee_id><doaj_id>oai_doaj_org_article_957d9ebda0504448855dd1955495a5cb</doaj_id><sourcerecordid>3061458965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-8b184d72e15edf6ef4cee6a0f2029f6ff7d41a52c33a93ea3c61833d6abe48fc3</originalsourceid><addsrcrecordid>eNpNkcFu3CAQhq2qlRIleYLmgNRLe_AGDNhwdK3dzUqpEmmbM2JhSFl5jYvZSHmFPnVJHK0yF0aj7_-B-YviK8ELQrC8abtuud0uKlyxBWWYNg35VJxXpJYl5bT-_KE_K66maY9ziTzizXnxb_WwbtHmMPZwgCHp5MOAgkPLvvdj8qbsjvEZ0EPwQ0K_jn3yY-_NjN0_Q0Tr1feqovQHepz88IR-hpD-ZLx_GcLB6_6kyagLEbURdLmFYfLJZ992PNlNl8UXp_sJrt7Pi-Jxtfzd3ZZ39-tN196VphIylWJHBLNNBYSDdTU4ZgBqjV1egHS1c41lRPPKUKolBU1NTQSlttY7YMIZelFsZl8b9F6N0R90fFFBe_U2CPFJ6Zi_3oPKK7ISdlZjjhljQnBuLZGcM8k1N7vs9W32GmP4e4QpqX04xiE_X1FcE8aFrHmm6EyZGKYpgjvdSrB6zVDNGarXDNV7hll1Pas8AHxQcMqZIPQ_SQaY4Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3061458965</pqid></control><display><type>article</type><title>FPGA Implementation of Elliptic-Curve Point Multiplication Over GF(2233) Using Booth Polynomial Multiplier for Area-Sensitive Applications</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Aljaedi, Amer ; Qureshi, Furqan Aziz ; Hazzazi, Mohammad Mazyad ; Imran, Malik ; Bassfar, Zaid ; Jamal, Sajjad Shaukat</creator><creatorcontrib>Aljaedi, Amer ; Qureshi, Furqan Aziz ; Hazzazi, Mohammad Mazyad ; Imran, Malik ; Bassfar, Zaid ; Jamal, Sajjad Shaukat</creatorcontrib><description><![CDATA[This article presents an area-efficient hardware architecture for the implementation of elliptic-curve point multiplication (PM) operation over <inline-formula> <tex-math notation="LaTeX">GF(2^{233}) </tex-math></inline-formula>. The area is minimized through three strategies: 1) implementing a bit-serial-based Booth polynomial multiplication architecture to multiply two polynomials with clock cycles overhead, 2) using one modular adder, Booth multiplier and square block in the arithmetic unit, and 3) realizing the modular inversion computation using the implemented square and Booth multiplier circuits. Moreover, the critical path is evaluated by the placement of registers in the datapath of the PM and Booth multiplier architectures. Moreover, a dedicated finite-state machine is implemented for control functionalities. Finally, a figure-of-merit (FoM), defined as throughput/area, facilitates realistic comparisons. The implementation results are reported on Xilinx field-programmable gate array (FPGA) devices. On the Virtex-7 device, our accelerator utilizes 1343 slices and can operate on a maximum of <inline-formula> <tex-math notation="LaTeX">393MHz </tex-math></inline-formula>, requiring 174457 clock cycles and <inline-formula> <tex-math notation="LaTeX">443.91\mu s </tex-math></inline-formula> for one PM computation. It consumes <inline-formula> <tex-math notation="LaTeX">1361mW </tex-math></inline-formula> power. The implementation results and comparison to state-of-the-art show that the proposed accelerator is suitable for cryptographic applications that demand lower hardware resource utilization without significant concerns regarding computation time.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3403771</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>accelerator ; Arithmetic and logic units ; Circuits ; Clocks ; Computation ; Computer architecture ; Critical path ; Cryptography ; Elliptic curve cryptography ; Field programmable gate arrays ; Figure of merit ; Finite state machines ; FPGA ; Hardware ; Hardware acceleration ; Multiplication ; Multipliers ; point multiplication ; Polynomials ; Resource utilization</subject><ispartof>IEEE access, 2024, Vol.12, p.72847-72859</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-8b184d72e15edf6ef4cee6a0f2029f6ff7d41a52c33a93ea3c61833d6abe48fc3</cites><orcidid>0000-0002-5852-1955 ; 0000-0003-1172-885X ; 0000-0003-4099-5025 ; 0000-0002-7945-9994 ; 0000-0002-1900-6387</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10535481$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Aljaedi, Amer</creatorcontrib><creatorcontrib>Qureshi, Furqan Aziz</creatorcontrib><creatorcontrib>Hazzazi, Mohammad Mazyad</creatorcontrib><creatorcontrib>Imran, Malik</creatorcontrib><creatorcontrib>Bassfar, Zaid</creatorcontrib><creatorcontrib>Jamal, Sajjad Shaukat</creatorcontrib><title>FPGA Implementation of Elliptic-Curve Point Multiplication Over GF(2233) Using Booth Polynomial Multiplier for Area-Sensitive Applications</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[This article presents an area-efficient hardware architecture for the implementation of elliptic-curve point multiplication (PM) operation over <inline-formula> <tex-math notation="LaTeX">GF(2^{233}) </tex-math></inline-formula>. The area is minimized through three strategies: 1) implementing a bit-serial-based Booth polynomial multiplication architecture to multiply two polynomials with clock cycles overhead, 2) using one modular adder, Booth multiplier and square block in the arithmetic unit, and 3) realizing the modular inversion computation using the implemented square and Booth multiplier circuits. Moreover, the critical path is evaluated by the placement of registers in the datapath of the PM and Booth multiplier architectures. Moreover, a dedicated finite-state machine is implemented for control functionalities. Finally, a figure-of-merit (FoM), defined as throughput/area, facilitates realistic comparisons. The implementation results are reported on Xilinx field-programmable gate array (FPGA) devices. On the Virtex-7 device, our accelerator utilizes 1343 slices and can operate on a maximum of <inline-formula> <tex-math notation="LaTeX">393MHz </tex-math></inline-formula>, requiring 174457 clock cycles and <inline-formula> <tex-math notation="LaTeX">443.91\mu s </tex-math></inline-formula> for one PM computation. It consumes <inline-formula> <tex-math notation="LaTeX">1361mW </tex-math></inline-formula> power. The implementation results and comparison to state-of-the-art show that the proposed accelerator is suitable for cryptographic applications that demand lower hardware resource utilization without significant concerns regarding computation time.]]></description><subject>accelerator</subject><subject>Arithmetic and logic units</subject><subject>Circuits</subject><subject>Clocks</subject><subject>Computation</subject><subject>Computer architecture</subject><subject>Critical path</subject><subject>Cryptography</subject><subject>Elliptic curve cryptography</subject><subject>Field programmable gate arrays</subject><subject>Figure of merit</subject><subject>Finite state machines</subject><subject>FPGA</subject><subject>Hardware</subject><subject>Hardware acceleration</subject><subject>Multiplication</subject><subject>Multipliers</subject><subject>point multiplication</subject><subject>Polynomials</subject><subject>Resource utilization</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkcFu3CAQhq2qlRIleYLmgNRLe_AGDNhwdK3dzUqpEmmbM2JhSFl5jYvZSHmFPnVJHK0yF0aj7_-B-YviK8ELQrC8abtuud0uKlyxBWWYNg35VJxXpJYl5bT-_KE_K66maY9ziTzizXnxb_WwbtHmMPZwgCHp5MOAgkPLvvdj8qbsjvEZ0EPwQ0K_jn3yY-_NjN0_Q0Tr1feqovQHepz88IR-hpD-ZLx_GcLB6_6kyagLEbURdLmFYfLJZ992PNlNl8UXp_sJrt7Pi-Jxtfzd3ZZ39-tN196VphIylWJHBLNNBYSDdTU4ZgBqjV1egHS1c41lRPPKUKolBU1NTQSlttY7YMIZelFsZl8b9F6N0R90fFFBe_U2CPFJ6Zi_3oPKK7ISdlZjjhljQnBuLZGcM8k1N7vs9W32GmP4e4QpqX04xiE_X1FcE8aFrHmm6EyZGKYpgjvdSrB6zVDNGarXDNV7hll1Pas8AHxQcMqZIPQ_SQaY4Q</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Aljaedi, Amer</creator><creator>Qureshi, Furqan Aziz</creator><creator>Hazzazi, Mohammad Mazyad</creator><creator>Imran, Malik</creator><creator>Bassfar, Zaid</creator><creator>Jamal, Sajjad Shaukat</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5852-1955</orcidid><orcidid>https://orcid.org/0000-0003-1172-885X</orcidid><orcidid>https://orcid.org/0000-0003-4099-5025</orcidid><orcidid>https://orcid.org/0000-0002-7945-9994</orcidid><orcidid>https://orcid.org/0000-0002-1900-6387</orcidid></search><sort><creationdate>2024</creationdate><title>FPGA Implementation of Elliptic-Curve Point Multiplication Over GF(2233) Using Booth Polynomial Multiplier for Area-Sensitive Applications</title><author>Aljaedi, Amer ; Qureshi, Furqan Aziz ; Hazzazi, Mohammad Mazyad ; Imran, Malik ; Bassfar, Zaid ; Jamal, Sajjad Shaukat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-8b184d72e15edf6ef4cee6a0f2029f6ff7d41a52c33a93ea3c61833d6abe48fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>accelerator</topic><topic>Arithmetic and logic units</topic><topic>Circuits</topic><topic>Clocks</topic><topic>Computation</topic><topic>Computer architecture</topic><topic>Critical path</topic><topic>Cryptography</topic><topic>Elliptic curve cryptography</topic><topic>Field programmable gate arrays</topic><topic>Figure of merit</topic><topic>Finite state machines</topic><topic>FPGA</topic><topic>Hardware</topic><topic>Hardware acceleration</topic><topic>Multiplication</topic><topic>Multipliers</topic><topic>point multiplication</topic><topic>Polynomials</topic><topic>Resource utilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aljaedi, Amer</creatorcontrib><creatorcontrib>Qureshi, Furqan Aziz</creatorcontrib><creatorcontrib>Hazzazi, Mohammad Mazyad</creatorcontrib><creatorcontrib>Imran, Malik</creatorcontrib><creatorcontrib>Bassfar, Zaid</creatorcontrib><creatorcontrib>Jamal, Sajjad Shaukat</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aljaedi, Amer</au><au>Qureshi, Furqan Aziz</au><au>Hazzazi, Mohammad Mazyad</au><au>Imran, Malik</au><au>Bassfar, Zaid</au><au>Jamal, Sajjad Shaukat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FPGA Implementation of Elliptic-Curve Point Multiplication Over GF(2233) Using Booth Polynomial Multiplier for Area-Sensitive Applications</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>72847</spage><epage>72859</epage><pages>72847-72859</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[This article presents an area-efficient hardware architecture for the implementation of elliptic-curve point multiplication (PM) operation over <inline-formula> <tex-math notation="LaTeX">GF(2^{233}) </tex-math></inline-formula>. The area is minimized through three strategies: 1) implementing a bit-serial-based Booth polynomial multiplication architecture to multiply two polynomials with clock cycles overhead, 2) using one modular adder, Booth multiplier and square block in the arithmetic unit, and 3) realizing the modular inversion computation using the implemented square and Booth multiplier circuits. Moreover, the critical path is evaluated by the placement of registers in the datapath of the PM and Booth multiplier architectures. Moreover, a dedicated finite-state machine is implemented for control functionalities. Finally, a figure-of-merit (FoM), defined as throughput/area, facilitates realistic comparisons. The implementation results are reported on Xilinx field-programmable gate array (FPGA) devices. On the Virtex-7 device, our accelerator utilizes 1343 slices and can operate on a maximum of <inline-formula> <tex-math notation="LaTeX">393MHz </tex-math></inline-formula>, requiring 174457 clock cycles and <inline-formula> <tex-math notation="LaTeX">443.91\mu s </tex-math></inline-formula> for one PM computation. It consumes <inline-formula> <tex-math notation="LaTeX">1361mW </tex-math></inline-formula> power. The implementation results and comparison to state-of-the-art show that the proposed accelerator is suitable for cryptographic applications that demand lower hardware resource utilization without significant concerns regarding computation time.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3403771</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5852-1955</orcidid><orcidid>https://orcid.org/0000-0003-1172-885X</orcidid><orcidid>https://orcid.org/0000-0003-4099-5025</orcidid><orcidid>https://orcid.org/0000-0002-7945-9994</orcidid><orcidid>https://orcid.org/0000-0002-1900-6387</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.72847-72859
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_3061458965
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects accelerator
Arithmetic and logic units
Circuits
Clocks
Computation
Computer architecture
Critical path
Cryptography
Elliptic curve cryptography
Field programmable gate arrays
Figure of merit
Finite state machines
FPGA
Hardware
Hardware acceleration
Multiplication
Multipliers
point multiplication
Polynomials
Resource utilization
title FPGA Implementation of Elliptic-Curve Point Multiplication Over GF(2233) Using Booth Polynomial Multiplier for Area-Sensitive Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A35%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FPGA%20Implementation%20of%20Elliptic-Curve%20Point%20Multiplication%20Over%20GF(2233)%20Using%20Booth%20Polynomial%20Multiplier%20for%20Area-Sensitive%20Applications&rft.jtitle=IEEE%20access&rft.au=Aljaedi,%20Amer&rft.date=2024&rft.volume=12&rft.spage=72847&rft.epage=72859&rft.pages=72847-72859&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3403771&rft_dat=%3Cproquest_doaj_%3E3061458965%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3061458965&rft_id=info:pmid/&rft_ieee_id=10535481&rft_doaj_id=oai_doaj_org_article_957d9ebda0504448855dd1955495a5cb&rfr_iscdi=true