FPGA Implementation of Elliptic-Curve Point Multiplication Over GF(2233) Using Booth Polynomial Multiplier for Area-Sensitive Applications
This article presents an area-efficient hardware architecture for the implementation of elliptic-curve point multiplication (PM) operation over GF(2^{233}) . The area is minimized through three strategies: 1) implementing a bit-serial-based Booth polynomial multiplication architecture to multiply t...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.72847-72859 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 72859 |
---|---|
container_issue | |
container_start_page | 72847 |
container_title | IEEE access |
container_volume | 12 |
creator | Aljaedi, Amer Qureshi, Furqan Aziz Hazzazi, Mohammad Mazyad Imran, Malik Bassfar, Zaid Jamal, Sajjad Shaukat |
description | This article presents an area-efficient hardware architecture for the implementation of elliptic-curve point multiplication (PM) operation over GF(2^{233}) . The area is minimized through three strategies: 1) implementing a bit-serial-based Booth polynomial multiplication architecture to multiply two polynomials with clock cycles overhead, 2) using one modular adder, Booth multiplier and square block in the arithmetic unit, and 3) realizing the modular inversion computation using the implemented square and Booth multiplier circuits. Moreover, the critical path is evaluated by the placement of registers in the datapath of the PM and Booth multiplier architectures. Moreover, a dedicated finite-state machine is implemented for control functionalities. Finally, a figure-of-merit (FoM), defined as throughput/area, facilitates realistic comparisons. The implementation results are reported on Xilinx field-programmable gate array (FPGA) devices. On the Virtex-7 device, our accelerator utilizes 1343 slices and can operate on a maximum of 393MHz , requiring 174457 clock cycles and 443.91\mu s for one PM computation. It consumes 1361mW power. The implementation results and comparison to state-of-the-art show that the proposed accelerator is suitable for cryptographic applications that demand lower hardware resource utilization without significant concerns regarding computation time. |
doi_str_mv | 10.1109/ACCESS.2024.3403771 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_3061458965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10535481</ieee_id><doaj_id>oai_doaj_org_article_957d9ebda0504448855dd1955495a5cb</doaj_id><sourcerecordid>3061458965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-8b184d72e15edf6ef4cee6a0f2029f6ff7d41a52c33a93ea3c61833d6abe48fc3</originalsourceid><addsrcrecordid>eNpNkcFu3CAQhq2qlRIleYLmgNRLe_AGDNhwdK3dzUqpEmmbM2JhSFl5jYvZSHmFPnVJHK0yF0aj7_-B-YviK8ELQrC8abtuud0uKlyxBWWYNg35VJxXpJYl5bT-_KE_K66maY9ziTzizXnxb_WwbtHmMPZwgCHp5MOAgkPLvvdj8qbsjvEZ0EPwQ0K_jn3yY-_NjN0_Q0Tr1feqovQHepz88IR-hpD-ZLx_GcLB6_6kyagLEbURdLmFYfLJZ992PNlNl8UXp_sJrt7Pi-Jxtfzd3ZZ39-tN196VphIylWJHBLNNBYSDdTU4ZgBqjV1egHS1c41lRPPKUKolBU1NTQSlttY7YMIZelFsZl8b9F6N0R90fFFBe_U2CPFJ6Zi_3oPKK7ISdlZjjhljQnBuLZGcM8k1N7vs9W32GmP4e4QpqX04xiE_X1FcE8aFrHmm6EyZGKYpgjvdSrB6zVDNGarXDNV7hll1Pas8AHxQcMqZIPQ_SQaY4Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3061458965</pqid></control><display><type>article</type><title>FPGA Implementation of Elliptic-Curve Point Multiplication Over GF(2233) Using Booth Polynomial Multiplier for Area-Sensitive Applications</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Aljaedi, Amer ; Qureshi, Furqan Aziz ; Hazzazi, Mohammad Mazyad ; Imran, Malik ; Bassfar, Zaid ; Jamal, Sajjad Shaukat</creator><creatorcontrib>Aljaedi, Amer ; Qureshi, Furqan Aziz ; Hazzazi, Mohammad Mazyad ; Imran, Malik ; Bassfar, Zaid ; Jamal, Sajjad Shaukat</creatorcontrib><description><![CDATA[This article presents an area-efficient hardware architecture for the implementation of elliptic-curve point multiplication (PM) operation over <inline-formula> <tex-math notation="LaTeX">GF(2^{233}) </tex-math></inline-formula>. The area is minimized through three strategies: 1) implementing a bit-serial-based Booth polynomial multiplication architecture to multiply two polynomials with clock cycles overhead, 2) using one modular adder, Booth multiplier and square block in the arithmetic unit, and 3) realizing the modular inversion computation using the implemented square and Booth multiplier circuits. Moreover, the critical path is evaluated by the placement of registers in the datapath of the PM and Booth multiplier architectures. Moreover, a dedicated finite-state machine is implemented for control functionalities. Finally, a figure-of-merit (FoM), defined as throughput/area, facilitates realistic comparisons. The implementation results are reported on Xilinx field-programmable gate array (FPGA) devices. On the Virtex-7 device, our accelerator utilizes 1343 slices and can operate on a maximum of <inline-formula> <tex-math notation="LaTeX">393MHz </tex-math></inline-formula>, requiring 174457 clock cycles and <inline-formula> <tex-math notation="LaTeX">443.91\mu s </tex-math></inline-formula> for one PM computation. It consumes <inline-formula> <tex-math notation="LaTeX">1361mW </tex-math></inline-formula> power. The implementation results and comparison to state-of-the-art show that the proposed accelerator is suitable for cryptographic applications that demand lower hardware resource utilization without significant concerns regarding computation time.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3403771</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>accelerator ; Arithmetic and logic units ; Circuits ; Clocks ; Computation ; Computer architecture ; Critical path ; Cryptography ; Elliptic curve cryptography ; Field programmable gate arrays ; Figure of merit ; Finite state machines ; FPGA ; Hardware ; Hardware acceleration ; Multiplication ; Multipliers ; point multiplication ; Polynomials ; Resource utilization</subject><ispartof>IEEE access, 2024, Vol.12, p.72847-72859</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-8b184d72e15edf6ef4cee6a0f2029f6ff7d41a52c33a93ea3c61833d6abe48fc3</cites><orcidid>0000-0002-5852-1955 ; 0000-0003-1172-885X ; 0000-0003-4099-5025 ; 0000-0002-7945-9994 ; 0000-0002-1900-6387</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10535481$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Aljaedi, Amer</creatorcontrib><creatorcontrib>Qureshi, Furqan Aziz</creatorcontrib><creatorcontrib>Hazzazi, Mohammad Mazyad</creatorcontrib><creatorcontrib>Imran, Malik</creatorcontrib><creatorcontrib>Bassfar, Zaid</creatorcontrib><creatorcontrib>Jamal, Sajjad Shaukat</creatorcontrib><title>FPGA Implementation of Elliptic-Curve Point Multiplication Over GF(2233) Using Booth Polynomial Multiplier for Area-Sensitive Applications</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[This article presents an area-efficient hardware architecture for the implementation of elliptic-curve point multiplication (PM) operation over <inline-formula> <tex-math notation="LaTeX">GF(2^{233}) </tex-math></inline-formula>. The area is minimized through three strategies: 1) implementing a bit-serial-based Booth polynomial multiplication architecture to multiply two polynomials with clock cycles overhead, 2) using one modular adder, Booth multiplier and square block in the arithmetic unit, and 3) realizing the modular inversion computation using the implemented square and Booth multiplier circuits. Moreover, the critical path is evaluated by the placement of registers in the datapath of the PM and Booth multiplier architectures. Moreover, a dedicated finite-state machine is implemented for control functionalities. Finally, a figure-of-merit (FoM), defined as throughput/area, facilitates realistic comparisons. The implementation results are reported on Xilinx field-programmable gate array (FPGA) devices. On the Virtex-7 device, our accelerator utilizes 1343 slices and can operate on a maximum of <inline-formula> <tex-math notation="LaTeX">393MHz </tex-math></inline-formula>, requiring 174457 clock cycles and <inline-formula> <tex-math notation="LaTeX">443.91\mu s </tex-math></inline-formula> for one PM computation. It consumes <inline-formula> <tex-math notation="LaTeX">1361mW </tex-math></inline-formula> power. The implementation results and comparison to state-of-the-art show that the proposed accelerator is suitable for cryptographic applications that demand lower hardware resource utilization without significant concerns regarding computation time.]]></description><subject>accelerator</subject><subject>Arithmetic and logic units</subject><subject>Circuits</subject><subject>Clocks</subject><subject>Computation</subject><subject>Computer architecture</subject><subject>Critical path</subject><subject>Cryptography</subject><subject>Elliptic curve cryptography</subject><subject>Field programmable gate arrays</subject><subject>Figure of merit</subject><subject>Finite state machines</subject><subject>FPGA</subject><subject>Hardware</subject><subject>Hardware acceleration</subject><subject>Multiplication</subject><subject>Multipliers</subject><subject>point multiplication</subject><subject>Polynomials</subject><subject>Resource utilization</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkcFu3CAQhq2qlRIleYLmgNRLe_AGDNhwdK3dzUqpEmmbM2JhSFl5jYvZSHmFPnVJHK0yF0aj7_-B-YviK8ELQrC8abtuud0uKlyxBWWYNg35VJxXpJYl5bT-_KE_K66maY9ziTzizXnxb_WwbtHmMPZwgCHp5MOAgkPLvvdj8qbsjvEZ0EPwQ0K_jn3yY-_NjN0_Q0Tr1feqovQHepz88IR-hpD-ZLx_GcLB6_6kyagLEbURdLmFYfLJZ992PNlNl8UXp_sJrt7Pi-Jxtfzd3ZZ39-tN196VphIylWJHBLNNBYSDdTU4ZgBqjV1egHS1c41lRPPKUKolBU1NTQSlttY7YMIZelFsZl8b9F6N0R90fFFBe_U2CPFJ6Zi_3oPKK7ISdlZjjhljQnBuLZGcM8k1N7vs9W32GmP4e4QpqX04xiE_X1FcE8aFrHmm6EyZGKYpgjvdSrB6zVDNGarXDNV7hll1Pas8AHxQcMqZIPQ_SQaY4Q</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Aljaedi, Amer</creator><creator>Qureshi, Furqan Aziz</creator><creator>Hazzazi, Mohammad Mazyad</creator><creator>Imran, Malik</creator><creator>Bassfar, Zaid</creator><creator>Jamal, Sajjad Shaukat</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5852-1955</orcidid><orcidid>https://orcid.org/0000-0003-1172-885X</orcidid><orcidid>https://orcid.org/0000-0003-4099-5025</orcidid><orcidid>https://orcid.org/0000-0002-7945-9994</orcidid><orcidid>https://orcid.org/0000-0002-1900-6387</orcidid></search><sort><creationdate>2024</creationdate><title>FPGA Implementation of Elliptic-Curve Point Multiplication Over GF(2233) Using Booth Polynomial Multiplier for Area-Sensitive Applications</title><author>Aljaedi, Amer ; Qureshi, Furqan Aziz ; Hazzazi, Mohammad Mazyad ; Imran, Malik ; Bassfar, Zaid ; Jamal, Sajjad Shaukat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-8b184d72e15edf6ef4cee6a0f2029f6ff7d41a52c33a93ea3c61833d6abe48fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>accelerator</topic><topic>Arithmetic and logic units</topic><topic>Circuits</topic><topic>Clocks</topic><topic>Computation</topic><topic>Computer architecture</topic><topic>Critical path</topic><topic>Cryptography</topic><topic>Elliptic curve cryptography</topic><topic>Field programmable gate arrays</topic><topic>Figure of merit</topic><topic>Finite state machines</topic><topic>FPGA</topic><topic>Hardware</topic><topic>Hardware acceleration</topic><topic>Multiplication</topic><topic>Multipliers</topic><topic>point multiplication</topic><topic>Polynomials</topic><topic>Resource utilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aljaedi, Amer</creatorcontrib><creatorcontrib>Qureshi, Furqan Aziz</creatorcontrib><creatorcontrib>Hazzazi, Mohammad Mazyad</creatorcontrib><creatorcontrib>Imran, Malik</creatorcontrib><creatorcontrib>Bassfar, Zaid</creatorcontrib><creatorcontrib>Jamal, Sajjad Shaukat</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aljaedi, Amer</au><au>Qureshi, Furqan Aziz</au><au>Hazzazi, Mohammad Mazyad</au><au>Imran, Malik</au><au>Bassfar, Zaid</au><au>Jamal, Sajjad Shaukat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FPGA Implementation of Elliptic-Curve Point Multiplication Over GF(2233) Using Booth Polynomial Multiplier for Area-Sensitive Applications</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>72847</spage><epage>72859</epage><pages>72847-72859</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[This article presents an area-efficient hardware architecture for the implementation of elliptic-curve point multiplication (PM) operation over <inline-formula> <tex-math notation="LaTeX">GF(2^{233}) </tex-math></inline-formula>. The area is minimized through three strategies: 1) implementing a bit-serial-based Booth polynomial multiplication architecture to multiply two polynomials with clock cycles overhead, 2) using one modular adder, Booth multiplier and square block in the arithmetic unit, and 3) realizing the modular inversion computation using the implemented square and Booth multiplier circuits. Moreover, the critical path is evaluated by the placement of registers in the datapath of the PM and Booth multiplier architectures. Moreover, a dedicated finite-state machine is implemented for control functionalities. Finally, a figure-of-merit (FoM), defined as throughput/area, facilitates realistic comparisons. The implementation results are reported on Xilinx field-programmable gate array (FPGA) devices. On the Virtex-7 device, our accelerator utilizes 1343 slices and can operate on a maximum of <inline-formula> <tex-math notation="LaTeX">393MHz </tex-math></inline-formula>, requiring 174457 clock cycles and <inline-formula> <tex-math notation="LaTeX">443.91\mu s </tex-math></inline-formula> for one PM computation. It consumes <inline-formula> <tex-math notation="LaTeX">1361mW </tex-math></inline-formula> power. The implementation results and comparison to state-of-the-art show that the proposed accelerator is suitable for cryptographic applications that demand lower hardware resource utilization without significant concerns regarding computation time.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3403771</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-5852-1955</orcidid><orcidid>https://orcid.org/0000-0003-1172-885X</orcidid><orcidid>https://orcid.org/0000-0003-4099-5025</orcidid><orcidid>https://orcid.org/0000-0002-7945-9994</orcidid><orcidid>https://orcid.org/0000-0002-1900-6387</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.72847-72859 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_3061458965 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | accelerator Arithmetic and logic units Circuits Clocks Computation Computer architecture Critical path Cryptography Elliptic curve cryptography Field programmable gate arrays Figure of merit Finite state machines FPGA Hardware Hardware acceleration Multiplication Multipliers point multiplication Polynomials Resource utilization |
title | FPGA Implementation of Elliptic-Curve Point Multiplication Over GF(2233) Using Booth Polynomial Multiplier for Area-Sensitive Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A35%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FPGA%20Implementation%20of%20Elliptic-Curve%20Point%20Multiplication%20Over%20GF(2233)%20Using%20Booth%20Polynomial%20Multiplier%20for%20Area-Sensitive%20Applications&rft.jtitle=IEEE%20access&rft.au=Aljaedi,%20Amer&rft.date=2024&rft.volume=12&rft.spage=72847&rft.epage=72859&rft.pages=72847-72859&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3403771&rft_dat=%3Cproquest_doaj_%3E3061458965%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3061458965&rft_id=info:pmid/&rft_ieee_id=10535481&rft_doaj_id=oai_doaj_org_article_957d9ebda0504448855dd1955495a5cb&rfr_iscdi=true |