Generalization Bounds in the Predict-Then-Optimize Framework
The predict-then-optimize framework is fundamental in many practical settings: predict the unknown parameters of an optimization problem and then solve the problem using the predicted values of the parameters. A natural loss function in this environment is to consider the cost of the decisions induc...
Gespeichert in:
Veröffentlicht in: | Mathematics of operations research 2023-11, Vol.48 (4), p.2043-2065 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2065 |
---|---|
container_issue | 4 |
container_start_page | 2043 |
container_title | Mathematics of operations research |
container_volume | 48 |
creator | El Balghiti, Othman |
description | The predict-then-optimize framework is fundamental in many practical settings: predict the unknown parameters of an optimization problem and then solve the problem using the predicted values of the parameters. A natural loss function in this environment is to consider the cost of the decisions induced by the predicted parameters in contrast to the prediction error of the parameters. This loss function is referred to as the smart predict-then-optimize (SPO) loss. In this work, we seek to provide bounds on how well the performance of a prediction model fit on training data generalizes out of sample in the context of the SPO loss. Because the SPO loss is nonconvex and non-Lipschitz, standard results for deriving generalization bounds do not apply. We first derive bounds based on the Natarajan dimension that, in the case of a polyhedral feasible region, scale at most logarithmically in the number of extreme points but, in the case of a general convex feasible region, have linear dependence on the decision dimension. By exploiting the structure of the SPO loss function and a key property of the feasible region, which we denote as the strength property, we can dramatically improve the dependence on the decision and feature dimensions. Our approach and analysis rely on placing a margin around problematic predictions that do not yield unique optimal solutions and then providing generalization bounds in the context of a modified margin SPO loss function that is Lipschitz continuous. Finally, we characterize the strength property and show that the modified SPO loss can be computed efficiently for both strongly convex bodies and polytopes with an explicit extreme point representation.
Funding:
O. El Balghiti thanks Rayens Capital for their support. A. N. Elmachtoub acknowledges the support of the National Science Foundation (NSF) [Grant CMMI-1763000]. P. Grigas acknowledges the support of NSF [Grants CCF-1755705 and CMMI-1762744]. A. Tewari acknowledges the support of the NSF [CAREER grant IIS-1452099] and a Sloan Research Fellowship. |
doi_str_mv | 10.1287/moor.2022.1330 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3060833571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3060833571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-88c6c965aa53061c7ef2d1c9be293722c71575fb55e6ed8398a11848262c50033</originalsourceid><addsrcrecordid>eNqFkEtLAzEURoMoWKtb1wOuM-YxeQy40WKrUKiLCt2FNJOhqZ2kJlPE_npTRnDp6m7O_e53DwC3GJWYSHHfhRBLgggpMaXoDIwwIxyySuBzMEKUV1BwtroEVyltEcJM4GoEHmbW26h37qh7F3zxFA6-SYXzRb-xxVu0jTM9XG6sh4t97zp3tMU06s5-hfhxDS5avUv25neOwfv0eTl5gfPF7HXyOIeGYtFDKQ03NWdaM4o4NsK2pMGmXltSU0GIEbkMa9eMWW4bSWupMZaVJJwYhhClY3A35O5j-DzY1KttOESfT6ociCSl-ZlMlQNlYkgp2lbto-t0_FYYqZMhdTKkTobUyVBeKIYFa4J36Q-XgqLcjK4yAgfE-TbELv0X-QMYu3GB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3060833571</pqid></control><display><type>article</type><title>Generalization Bounds in the Predict-Then-Optimize Framework</title><source>INFORMS PubsOnLine</source><creator>El Balghiti, Othman</creator><creatorcontrib>El Balghiti, Othman</creatorcontrib><description>The predict-then-optimize framework is fundamental in many practical settings: predict the unknown parameters of an optimization problem and then solve the problem using the predicted values of the parameters. A natural loss function in this environment is to consider the cost of the decisions induced by the predicted parameters in contrast to the prediction error of the parameters. This loss function is referred to as the smart predict-then-optimize (SPO) loss. In this work, we seek to provide bounds on how well the performance of a prediction model fit on training data generalizes out of sample in the context of the SPO loss. Because the SPO loss is nonconvex and non-Lipschitz, standard results for deriving generalization bounds do not apply. We first derive bounds based on the Natarajan dimension that, in the case of a polyhedral feasible region, scale at most logarithmically in the number of extreme points but, in the case of a general convex feasible region, have linear dependence on the decision dimension. By exploiting the structure of the SPO loss function and a key property of the feasible region, which we denote as the strength property, we can dramatically improve the dependence on the decision and feature dimensions. Our approach and analysis rely on placing a margin around problematic predictions that do not yield unique optimal solutions and then providing generalization bounds in the context of a modified margin SPO loss function that is Lipschitz continuous. Finally, we characterize the strength property and show that the modified SPO loss can be computed efficiently for both strongly convex bodies and polytopes with an explicit extreme point representation.
Funding:
O. El Balghiti thanks Rayens Capital for their support. A. N. Elmachtoub acknowledges the support of the National Science Foundation (NSF) [Grant CMMI-1763000]. P. Grigas acknowledges the support of NSF [Grants CCF-1755705 and CMMI-1762744]. A. Tewari acknowledges the support of the NSF [CAREER grant IIS-1452099] and a Sloan Research Fellowship.</description><identifier>ISSN: 0364-765X</identifier><identifier>EISSN: 1526-5471</identifier><identifier>DOI: 10.1287/moor.2022.1330</identifier><language>eng</language><publisher>Linthicum: INFORMS</publisher><subject>68Q32 ; generalization bounds ; Lipschitz condition ; Mathematical problems ; Optimization ; Parameter optimization ; Parameters ; Polytopes ; predict-then-optimize ; Prediction models ; Predictions ; prescriptive analytics ; Primary: 90B99 ; Regression</subject><ispartof>Mathematics of operations research, 2023-11, Vol.48 (4), p.2043-2065</ispartof><rights>Copyright Institute for Operations Research and the Management Sciences Nov 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c317t-88c6c965aa53061c7ef2d1c9be293722c71575fb55e6ed8398a11848262c50033</cites><orcidid>0000-0001-6969-7844 ; 0000-0002-5617-1058 ; 0000-0003-0729-4999</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubsonline.informs.org/doi/full/10.1287/moor.2022.1330$$EHTML$$P50$$Ginforms$$H</linktohtml><link.rule.ids>314,776,780,3678,27903,27904,62593</link.rule.ids></links><search><creatorcontrib>El Balghiti, Othman</creatorcontrib><title>Generalization Bounds in the Predict-Then-Optimize Framework</title><title>Mathematics of operations research</title><description>The predict-then-optimize framework is fundamental in many practical settings: predict the unknown parameters of an optimization problem and then solve the problem using the predicted values of the parameters. A natural loss function in this environment is to consider the cost of the decisions induced by the predicted parameters in contrast to the prediction error of the parameters. This loss function is referred to as the smart predict-then-optimize (SPO) loss. In this work, we seek to provide bounds on how well the performance of a prediction model fit on training data generalizes out of sample in the context of the SPO loss. Because the SPO loss is nonconvex and non-Lipschitz, standard results for deriving generalization bounds do not apply. We first derive bounds based on the Natarajan dimension that, in the case of a polyhedral feasible region, scale at most logarithmically in the number of extreme points but, in the case of a general convex feasible region, have linear dependence on the decision dimension. By exploiting the structure of the SPO loss function and a key property of the feasible region, which we denote as the strength property, we can dramatically improve the dependence on the decision and feature dimensions. Our approach and analysis rely on placing a margin around problematic predictions that do not yield unique optimal solutions and then providing generalization bounds in the context of a modified margin SPO loss function that is Lipschitz continuous. Finally, we characterize the strength property and show that the modified SPO loss can be computed efficiently for both strongly convex bodies and polytopes with an explicit extreme point representation.
Funding:
O. El Balghiti thanks Rayens Capital for their support. A. N. Elmachtoub acknowledges the support of the National Science Foundation (NSF) [Grant CMMI-1763000]. P. Grigas acknowledges the support of NSF [Grants CCF-1755705 and CMMI-1762744]. A. Tewari acknowledges the support of the NSF [CAREER grant IIS-1452099] and a Sloan Research Fellowship.</description><subject>68Q32</subject><subject>generalization bounds</subject><subject>Lipschitz condition</subject><subject>Mathematical problems</subject><subject>Optimization</subject><subject>Parameter optimization</subject><subject>Parameters</subject><subject>Polytopes</subject><subject>predict-then-optimize</subject><subject>Prediction models</subject><subject>Predictions</subject><subject>prescriptive analytics</subject><subject>Primary: 90B99</subject><subject>Regression</subject><issn>0364-765X</issn><issn>1526-5471</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEURoMoWKtb1wOuM-YxeQy40WKrUKiLCt2FNJOhqZ2kJlPE_npTRnDp6m7O_e53DwC3GJWYSHHfhRBLgggpMaXoDIwwIxyySuBzMEKUV1BwtroEVyltEcJM4GoEHmbW26h37qh7F3zxFA6-SYXzRb-xxVu0jTM9XG6sh4t97zp3tMU06s5-hfhxDS5avUv25neOwfv0eTl5gfPF7HXyOIeGYtFDKQ03NWdaM4o4NsK2pMGmXltSU0GIEbkMa9eMWW4bSWupMZaVJJwYhhClY3A35O5j-DzY1KttOESfT6ociCSl-ZlMlQNlYkgp2lbto-t0_FYYqZMhdTKkTobUyVBeKIYFa4J36Q-XgqLcjK4yAgfE-TbELv0X-QMYu3GB</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>El Balghiti, Othman</creator><general>INFORMS</general><general>Institute for Operations Research and the Management Sciences</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0001-6969-7844</orcidid><orcidid>https://orcid.org/0000-0002-5617-1058</orcidid><orcidid>https://orcid.org/0000-0003-0729-4999</orcidid></search><sort><creationdate>20231101</creationdate><title>Generalization Bounds in the Predict-Then-Optimize Framework</title><author>El Balghiti, Othman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-88c6c965aa53061c7ef2d1c9be293722c71575fb55e6ed8398a11848262c50033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>68Q32</topic><topic>generalization bounds</topic><topic>Lipschitz condition</topic><topic>Mathematical problems</topic><topic>Optimization</topic><topic>Parameter optimization</topic><topic>Parameters</topic><topic>Polytopes</topic><topic>predict-then-optimize</topic><topic>Prediction models</topic><topic>Predictions</topic><topic>prescriptive analytics</topic><topic>Primary: 90B99</topic><topic>Regression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El Balghiti, Othman</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Mathematics of operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El Balghiti, Othman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalization Bounds in the Predict-Then-Optimize Framework</atitle><jtitle>Mathematics of operations research</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>48</volume><issue>4</issue><spage>2043</spage><epage>2065</epage><pages>2043-2065</pages><issn>0364-765X</issn><eissn>1526-5471</eissn><abstract>The predict-then-optimize framework is fundamental in many practical settings: predict the unknown parameters of an optimization problem and then solve the problem using the predicted values of the parameters. A natural loss function in this environment is to consider the cost of the decisions induced by the predicted parameters in contrast to the prediction error of the parameters. This loss function is referred to as the smart predict-then-optimize (SPO) loss. In this work, we seek to provide bounds on how well the performance of a prediction model fit on training data generalizes out of sample in the context of the SPO loss. Because the SPO loss is nonconvex and non-Lipschitz, standard results for deriving generalization bounds do not apply. We first derive bounds based on the Natarajan dimension that, in the case of a polyhedral feasible region, scale at most logarithmically in the number of extreme points but, in the case of a general convex feasible region, have linear dependence on the decision dimension. By exploiting the structure of the SPO loss function and a key property of the feasible region, which we denote as the strength property, we can dramatically improve the dependence on the decision and feature dimensions. Our approach and analysis rely on placing a margin around problematic predictions that do not yield unique optimal solutions and then providing generalization bounds in the context of a modified margin SPO loss function that is Lipschitz continuous. Finally, we characterize the strength property and show that the modified SPO loss can be computed efficiently for both strongly convex bodies and polytopes with an explicit extreme point representation.
Funding:
O. El Balghiti thanks Rayens Capital for their support. A. N. Elmachtoub acknowledges the support of the National Science Foundation (NSF) [Grant CMMI-1763000]. P. Grigas acknowledges the support of NSF [Grants CCF-1755705 and CMMI-1762744]. A. Tewari acknowledges the support of the NSF [CAREER grant IIS-1452099] and a Sloan Research Fellowship.</abstract><cop>Linthicum</cop><pub>INFORMS</pub><doi>10.1287/moor.2022.1330</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-6969-7844</orcidid><orcidid>https://orcid.org/0000-0002-5617-1058</orcidid><orcidid>https://orcid.org/0000-0003-0729-4999</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0364-765X |
ispartof | Mathematics of operations research, 2023-11, Vol.48 (4), p.2043-2065 |
issn | 0364-765X 1526-5471 |
language | eng |
recordid | cdi_proquest_journals_3060833571 |
source | INFORMS PubsOnLine |
subjects | 68Q32 generalization bounds Lipschitz condition Mathematical problems Optimization Parameter optimization Parameters Polytopes predict-then-optimize Prediction models Predictions prescriptive analytics Primary: 90B99 Regression |
title | Generalization Bounds in the Predict-Then-Optimize Framework |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T08%3A43%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalization%20Bounds%20in%20the%20Predict-Then-Optimize%20Framework&rft.jtitle=Mathematics%20of%20operations%20research&rft.au=El%20Balghiti,%20Othman&rft.date=2023-11-01&rft.volume=48&rft.issue=4&rft.spage=2043&rft.epage=2065&rft.pages=2043-2065&rft.issn=0364-765X&rft.eissn=1526-5471&rft_id=info:doi/10.1287/moor.2022.1330&rft_dat=%3Cproquest_cross%3E3060833571%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3060833571&rft_id=info:pmid/&rfr_iscdi=true |