A dual‐resonance enhanced photoacoustic spectroscopy gas sensor based on a fiber optic cantilever beam microphone and a spherical photoacoustic cell

We propose a novel high‐performance dual‐resonance enhanced photoacoustic spectroscopy (DRE‐PAS) gas sensor based on a highly sensitive fiber optic cantilever beam microphone and a high‐Q spherical photoacoustic cell (PAC). The first‐order resonant frequency (FORF) of the spherical PAC is analyzed b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microwave and optical technology letters 2024-05, Vol.66 (5), p.n/a
Hauptverfasser: Zhu, Yongle, Guan, Yuchen, Jiang, Xu, Wu, Guojie, Gong, Zhenfeng, Wang, Xiaona, Tao, Pengcheng, Peng, Wei, Yu, Qingxu, Mei, Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 5
container_start_page
container_title Microwave and optical technology letters
container_volume 66
creator Zhu, Yongle
Guan, Yuchen
Jiang, Xu
Wu, Guojie
Gong, Zhenfeng
Wang, Xiaona
Tao, Pengcheng
Peng, Wei
Yu, Qingxu
Mei, Liang
description We propose a novel high‐performance dual‐resonance enhanced photoacoustic spectroscopy (DRE‐PAS) gas sensor based on a highly sensitive fiber optic cantilever beam microphone and a high‐Q spherical photoacoustic cell (PAC). The first‐order resonant frequency (FORF) of the spherical PAC is analyzed by finite element analysis to match the FORF of the cantilever microphone for the double resonance enhancement of the photoacoustic signal. The photoacoustic spectroscopy (PAS) system, including the DRE‐PAS sensor, a 1532.8 nm distributed feedback laser, and a high‐speed spectrometer, has been successfully exploited for trace acetylene (C2H2) detection. The experimental results show that the limit of detection (LOD) is 106.8 parts‐per‐billion (ppb) with an integral time of 1 s, and the LOD can be further reduced to 11.03 ppb by Allan‐Werle deviation for 100 s integral time. The normalized noise equivalent absorption coefficient can be obtained as 2.44 × 10−8 cm−1 WHz−1/2. The reported DRE‐PAS gas sensor has the superior characteristics of photoacoustic signal enhancement, high sensitivity, and strong antielectromagnetic interference capability, which can provide a new solution for PAS development.
doi_str_mv 10.1002/mop.34213
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3060731649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3060731649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1383-4f6c84da31626155311658bcfc5b39963f41a9beddb7cb00b49e878037ae0cc33</originalsourceid><addsrcrecordid>eNp1kL1OwzAUhS0EEqUw8AaWmBjS2nESJ2NV8ScVlQFmy3ZuaKrEDnYC6sYjMPGAPAkuYUJiOtLVd8_ROQidUzKjhMTz1nYzlsSUHaAJJUUexTwjh2hC8iKN4oTzY3Ti_ZYQwjiPJ-hzgctBNl_vHw68NdJowGA2ey1xt7G9ldoOvq819h3o3lmvbbfDz9JjD8Zbh5X0gbUGS1zVChy23R7X0vR1A6_hoEC2uK21s8HRAJamDLDvNuBqLZs_ORqa5hQdVbLxcParU_R0ffW4vI1W65u75WIVacpyFiVVpvOklIxmcUbTlFGapbnSlU4VK4qMVQmVhYKyVFwrQlRSQM7z0F0C0ZqxKboYfTtnXwbwvdjawZkQKRjJCA_GSRGoy5EKDbx3UInO1a10O0GJ2M8uwuziZ_bAzkf2LZTf_Q-K-_XD-PENh1CIOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3060731649</pqid></control><display><type>article</type><title>A dual‐resonance enhanced photoacoustic spectroscopy gas sensor based on a fiber optic cantilever beam microphone and a spherical photoacoustic cell</title><source>Wiley Online Library All Journals</source><creator>Zhu, Yongle ; Guan, Yuchen ; Jiang, Xu ; Wu, Guojie ; Gong, Zhenfeng ; Wang, Xiaona ; Tao, Pengcheng ; Peng, Wei ; Yu, Qingxu ; Mei, Liang</creator><creatorcontrib>Zhu, Yongle ; Guan, Yuchen ; Jiang, Xu ; Wu, Guojie ; Gong, Zhenfeng ; Wang, Xiaona ; Tao, Pengcheng ; Peng, Wei ; Yu, Qingxu ; Mei, Liang</creatorcontrib><description>We propose a novel high‐performance dual‐resonance enhanced photoacoustic spectroscopy (DRE‐PAS) gas sensor based on a highly sensitive fiber optic cantilever beam microphone and a high‐Q spherical photoacoustic cell (PAC). The first‐order resonant frequency (FORF) of the spherical PAC is analyzed by finite element analysis to match the FORF of the cantilever microphone for the double resonance enhancement of the photoacoustic signal. The photoacoustic spectroscopy (PAS) system, including the DRE‐PAS sensor, a 1532.8 nm distributed feedback laser, and a high‐speed spectrometer, has been successfully exploited for trace acetylene (C2H2) detection. The experimental results show that the limit of detection (LOD) is 106.8 parts‐per‐billion (ppb) with an integral time of 1 s, and the LOD can be further reduced to 11.03 ppb by Allan‐Werle deviation for 100 s integral time. The normalized noise equivalent absorption coefficient can be obtained as 2.44 × 10−8 cm−1 WHz−1/2. The reported DRE‐PAS gas sensor has the superior characteristics of photoacoustic signal enhancement, high sensitivity, and strong antielectromagnetic interference capability, which can provide a new solution for PAS development.</description><identifier>ISSN: 0895-2477</identifier><identifier>EISSN: 1098-2760</identifier><identifier>DOI: 10.1002/mop.34213</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc</publisher><subject>Absorptivity ; Acetylene ; Cantilever beams ; Distributed feedback lasers ; dual‐resonance enhanced photoacoustic spectroscopy ; fiber optic cantilever beam microphone ; Fiber optics ; Finite element method ; gas sensor ; Gas sensors ; Microphones ; Photoacoustic cells ; Photoacoustic spectroscopy ; Resonance ; Resonant frequencies ; Sensitivity enhancement ; Sensors ; Spectrum analysis ; spherical photoacoustic cell</subject><ispartof>Microwave and optical technology letters, 2024-05, Vol.66 (5), p.n/a</ispartof><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1383-4f6c84da31626155311658bcfc5b39963f41a9beddb7cb00b49e878037ae0cc33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmop.34213$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmop.34213$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Zhu, Yongle</creatorcontrib><creatorcontrib>Guan, Yuchen</creatorcontrib><creatorcontrib>Jiang, Xu</creatorcontrib><creatorcontrib>Wu, Guojie</creatorcontrib><creatorcontrib>Gong, Zhenfeng</creatorcontrib><creatorcontrib>Wang, Xiaona</creatorcontrib><creatorcontrib>Tao, Pengcheng</creatorcontrib><creatorcontrib>Peng, Wei</creatorcontrib><creatorcontrib>Yu, Qingxu</creatorcontrib><creatorcontrib>Mei, Liang</creatorcontrib><title>A dual‐resonance enhanced photoacoustic spectroscopy gas sensor based on a fiber optic cantilever beam microphone and a spherical photoacoustic cell</title><title>Microwave and optical technology letters</title><description>We propose a novel high‐performance dual‐resonance enhanced photoacoustic spectroscopy (DRE‐PAS) gas sensor based on a highly sensitive fiber optic cantilever beam microphone and a high‐Q spherical photoacoustic cell (PAC). The first‐order resonant frequency (FORF) of the spherical PAC is analyzed by finite element analysis to match the FORF of the cantilever microphone for the double resonance enhancement of the photoacoustic signal. The photoacoustic spectroscopy (PAS) system, including the DRE‐PAS sensor, a 1532.8 nm distributed feedback laser, and a high‐speed spectrometer, has been successfully exploited for trace acetylene (C2H2) detection. The experimental results show that the limit of detection (LOD) is 106.8 parts‐per‐billion (ppb) with an integral time of 1 s, and the LOD can be further reduced to 11.03 ppb by Allan‐Werle deviation for 100 s integral time. The normalized noise equivalent absorption coefficient can be obtained as 2.44 × 10−8 cm−1 WHz−1/2. The reported DRE‐PAS gas sensor has the superior characteristics of photoacoustic signal enhancement, high sensitivity, and strong antielectromagnetic interference capability, which can provide a new solution for PAS development.</description><subject>Absorptivity</subject><subject>Acetylene</subject><subject>Cantilever beams</subject><subject>Distributed feedback lasers</subject><subject>dual‐resonance enhanced photoacoustic spectroscopy</subject><subject>fiber optic cantilever beam microphone</subject><subject>Fiber optics</subject><subject>Finite element method</subject><subject>gas sensor</subject><subject>Gas sensors</subject><subject>Microphones</subject><subject>Photoacoustic cells</subject><subject>Photoacoustic spectroscopy</subject><subject>Resonance</subject><subject>Resonant frequencies</subject><subject>Sensitivity enhancement</subject><subject>Sensors</subject><subject>Spectrum analysis</subject><subject>spherical photoacoustic cell</subject><issn>0895-2477</issn><issn>1098-2760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAUhS0EEqUw8AaWmBjS2nESJ2NV8ScVlQFmy3ZuaKrEDnYC6sYjMPGAPAkuYUJiOtLVd8_ROQidUzKjhMTz1nYzlsSUHaAJJUUexTwjh2hC8iKN4oTzY3Ti_ZYQwjiPJ-hzgctBNl_vHw68NdJowGA2ey1xt7G9ldoOvq819h3o3lmvbbfDz9JjD8Zbh5X0gbUGS1zVChy23R7X0vR1A6_hoEC2uK21s8HRAJamDLDvNuBqLZs_ORqa5hQdVbLxcParU_R0ffW4vI1W65u75WIVacpyFiVVpvOklIxmcUbTlFGapbnSlU4VK4qMVQmVhYKyVFwrQlRSQM7z0F0C0ZqxKboYfTtnXwbwvdjawZkQKRjJCA_GSRGoy5EKDbx3UInO1a10O0GJ2M8uwuziZ_bAzkf2LZTf_Q-K-_XD-PENh1CIOw</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Zhu, Yongle</creator><creator>Guan, Yuchen</creator><creator>Jiang, Xu</creator><creator>Wu, Guojie</creator><creator>Gong, Zhenfeng</creator><creator>Wang, Xiaona</creator><creator>Tao, Pengcheng</creator><creator>Peng, Wei</creator><creator>Yu, Qingxu</creator><creator>Mei, Liang</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>202405</creationdate><title>A dual‐resonance enhanced photoacoustic spectroscopy gas sensor based on a fiber optic cantilever beam microphone and a spherical photoacoustic cell</title><author>Zhu, Yongle ; Guan, Yuchen ; Jiang, Xu ; Wu, Guojie ; Gong, Zhenfeng ; Wang, Xiaona ; Tao, Pengcheng ; Peng, Wei ; Yu, Qingxu ; Mei, Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1383-4f6c84da31626155311658bcfc5b39963f41a9beddb7cb00b49e878037ae0cc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorptivity</topic><topic>Acetylene</topic><topic>Cantilever beams</topic><topic>Distributed feedback lasers</topic><topic>dual‐resonance enhanced photoacoustic spectroscopy</topic><topic>fiber optic cantilever beam microphone</topic><topic>Fiber optics</topic><topic>Finite element method</topic><topic>gas sensor</topic><topic>Gas sensors</topic><topic>Microphones</topic><topic>Photoacoustic cells</topic><topic>Photoacoustic spectroscopy</topic><topic>Resonance</topic><topic>Resonant frequencies</topic><topic>Sensitivity enhancement</topic><topic>Sensors</topic><topic>Spectrum analysis</topic><topic>spherical photoacoustic cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Yongle</creatorcontrib><creatorcontrib>Guan, Yuchen</creatorcontrib><creatorcontrib>Jiang, Xu</creatorcontrib><creatorcontrib>Wu, Guojie</creatorcontrib><creatorcontrib>Gong, Zhenfeng</creatorcontrib><creatorcontrib>Wang, Xiaona</creatorcontrib><creatorcontrib>Tao, Pengcheng</creatorcontrib><creatorcontrib>Peng, Wei</creatorcontrib><creatorcontrib>Yu, Qingxu</creatorcontrib><creatorcontrib>Mei, Liang</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Microwave and optical technology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Yongle</au><au>Guan, Yuchen</au><au>Jiang, Xu</au><au>Wu, Guojie</au><au>Gong, Zhenfeng</au><au>Wang, Xiaona</au><au>Tao, Pengcheng</au><au>Peng, Wei</au><au>Yu, Qingxu</au><au>Mei, Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A dual‐resonance enhanced photoacoustic spectroscopy gas sensor based on a fiber optic cantilever beam microphone and a spherical photoacoustic cell</atitle><jtitle>Microwave and optical technology letters</jtitle><date>2024-05</date><risdate>2024</risdate><volume>66</volume><issue>5</issue><epage>n/a</epage><issn>0895-2477</issn><eissn>1098-2760</eissn><abstract>We propose a novel high‐performance dual‐resonance enhanced photoacoustic spectroscopy (DRE‐PAS) gas sensor based on a highly sensitive fiber optic cantilever beam microphone and a high‐Q spherical photoacoustic cell (PAC). The first‐order resonant frequency (FORF) of the spherical PAC is analyzed by finite element analysis to match the FORF of the cantilever microphone for the double resonance enhancement of the photoacoustic signal. The photoacoustic spectroscopy (PAS) system, including the DRE‐PAS sensor, a 1532.8 nm distributed feedback laser, and a high‐speed spectrometer, has been successfully exploited for trace acetylene (C2H2) detection. The experimental results show that the limit of detection (LOD) is 106.8 parts‐per‐billion (ppb) with an integral time of 1 s, and the LOD can be further reduced to 11.03 ppb by Allan‐Werle deviation for 100 s integral time. The normalized noise equivalent absorption coefficient can be obtained as 2.44 × 10−8 cm−1 WHz−1/2. The reported DRE‐PAS gas sensor has the superior characteristics of photoacoustic signal enhancement, high sensitivity, and strong antielectromagnetic interference capability, which can provide a new solution for PAS development.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mop.34213</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0895-2477
ispartof Microwave and optical technology letters, 2024-05, Vol.66 (5), p.n/a
issn 0895-2477
1098-2760
language eng
recordid cdi_proquest_journals_3060731649
source Wiley Online Library All Journals
subjects Absorptivity
Acetylene
Cantilever beams
Distributed feedback lasers
dual‐resonance enhanced photoacoustic spectroscopy
fiber optic cantilever beam microphone
Fiber optics
Finite element method
gas sensor
Gas sensors
Microphones
Photoacoustic cells
Photoacoustic spectroscopy
Resonance
Resonant frequencies
Sensitivity enhancement
Sensors
Spectrum analysis
spherical photoacoustic cell
title A dual‐resonance enhanced photoacoustic spectroscopy gas sensor based on a fiber optic cantilever beam microphone and a spherical photoacoustic cell
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T17%3A25%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20dual%E2%80%90resonance%20enhanced%20photoacoustic%20spectroscopy%20gas%20sensor%20based%20on%20a%20fiber%20optic%20cantilever%20beam%20microphone%20and%20a%20spherical%20photoacoustic%20cell&rft.jtitle=Microwave%20and%20optical%20technology%20letters&rft.au=Zhu,%20Yongle&rft.date=2024-05&rft.volume=66&rft.issue=5&rft.epage=n/a&rft.issn=0895-2477&rft.eissn=1098-2760&rft_id=info:doi/10.1002/mop.34213&rft_dat=%3Cproquest_cross%3E3060731649%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3060731649&rft_id=info:pmid/&rfr_iscdi=true