A dual‐resonance enhanced photoacoustic spectroscopy gas sensor based on a fiber optic cantilever beam microphone and a spherical photoacoustic cell
We propose a novel high‐performance dual‐resonance enhanced photoacoustic spectroscopy (DRE‐PAS) gas sensor based on a highly sensitive fiber optic cantilever beam microphone and a high‐Q spherical photoacoustic cell (PAC). The first‐order resonant frequency (FORF) of the spherical PAC is analyzed b...
Gespeichert in:
Veröffentlicht in: | Microwave and optical technology letters 2024-05, Vol.66 (5), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Microwave and optical technology letters |
container_volume | 66 |
creator | Zhu, Yongle Guan, Yuchen Jiang, Xu Wu, Guojie Gong, Zhenfeng Wang, Xiaona Tao, Pengcheng Peng, Wei Yu, Qingxu Mei, Liang |
description | We propose a novel high‐performance dual‐resonance enhanced photoacoustic spectroscopy (DRE‐PAS) gas sensor based on a highly sensitive fiber optic cantilever beam microphone and a high‐Q spherical photoacoustic cell (PAC). The first‐order resonant frequency (FORF) of the spherical PAC is analyzed by finite element analysis to match the FORF of the cantilever microphone for the double resonance enhancement of the photoacoustic signal. The photoacoustic spectroscopy (PAS) system, including the DRE‐PAS sensor, a 1532.8 nm distributed feedback laser, and a high‐speed spectrometer, has been successfully exploited for trace acetylene (C2H2) detection. The experimental results show that the limit of detection (LOD) is 106.8 parts‐per‐billion (ppb) with an integral time of 1 s, and the LOD can be further reduced to 11.03 ppb by Allan‐Werle deviation for 100 s integral time. The normalized noise equivalent absorption coefficient can be obtained as 2.44 × 10−8 cm−1 WHz−1/2. The reported DRE‐PAS gas sensor has the superior characteristics of photoacoustic signal enhancement, high sensitivity, and strong antielectromagnetic interference capability, which can provide a new solution for PAS development. |
doi_str_mv | 10.1002/mop.34213 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3060731649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3060731649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1383-4f6c84da31626155311658bcfc5b39963f41a9beddb7cb00b49e878037ae0cc33</originalsourceid><addsrcrecordid>eNp1kL1OwzAUhS0EEqUw8AaWmBjS2nESJ2NV8ScVlQFmy3ZuaKrEDnYC6sYjMPGAPAkuYUJiOtLVd8_ROQidUzKjhMTz1nYzlsSUHaAJJUUexTwjh2hC8iKN4oTzY3Ti_ZYQwjiPJ-hzgctBNl_vHw68NdJowGA2ey1xt7G9ldoOvq819h3o3lmvbbfDz9JjD8Zbh5X0gbUGS1zVChy23R7X0vR1A6_hoEC2uK21s8HRAJamDLDvNuBqLZs_ORqa5hQdVbLxcParU_R0ffW4vI1W65u75WIVacpyFiVVpvOklIxmcUbTlFGapbnSlU4VK4qMVQmVhYKyVFwrQlRSQM7z0F0C0ZqxKboYfTtnXwbwvdjawZkQKRjJCA_GSRGoy5EKDbx3UInO1a10O0GJ2M8uwuziZ_bAzkf2LZTf_Q-K-_XD-PENh1CIOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3060731649</pqid></control><display><type>article</type><title>A dual‐resonance enhanced photoacoustic spectroscopy gas sensor based on a fiber optic cantilever beam microphone and a spherical photoacoustic cell</title><source>Wiley Online Library All Journals</source><creator>Zhu, Yongle ; Guan, Yuchen ; Jiang, Xu ; Wu, Guojie ; Gong, Zhenfeng ; Wang, Xiaona ; Tao, Pengcheng ; Peng, Wei ; Yu, Qingxu ; Mei, Liang</creator><creatorcontrib>Zhu, Yongle ; Guan, Yuchen ; Jiang, Xu ; Wu, Guojie ; Gong, Zhenfeng ; Wang, Xiaona ; Tao, Pengcheng ; Peng, Wei ; Yu, Qingxu ; Mei, Liang</creatorcontrib><description>We propose a novel high‐performance dual‐resonance enhanced photoacoustic spectroscopy (DRE‐PAS) gas sensor based on a highly sensitive fiber optic cantilever beam microphone and a high‐Q spherical photoacoustic cell (PAC). The first‐order resonant frequency (FORF) of the spherical PAC is analyzed by finite element analysis to match the FORF of the cantilever microphone for the double resonance enhancement of the photoacoustic signal. The photoacoustic spectroscopy (PAS) system, including the DRE‐PAS sensor, a 1532.8 nm distributed feedback laser, and a high‐speed spectrometer, has been successfully exploited for trace acetylene (C2H2) detection. The experimental results show that the limit of detection (LOD) is 106.8 parts‐per‐billion (ppb) with an integral time of 1 s, and the LOD can be further reduced to 11.03 ppb by Allan‐Werle deviation for 100 s integral time. The normalized noise equivalent absorption coefficient can be obtained as 2.44 × 10−8 cm−1 WHz−1/2. The reported DRE‐PAS gas sensor has the superior characteristics of photoacoustic signal enhancement, high sensitivity, and strong antielectromagnetic interference capability, which can provide a new solution for PAS development.</description><identifier>ISSN: 0895-2477</identifier><identifier>EISSN: 1098-2760</identifier><identifier>DOI: 10.1002/mop.34213</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc</publisher><subject>Absorptivity ; Acetylene ; Cantilever beams ; Distributed feedback lasers ; dual‐resonance enhanced photoacoustic spectroscopy ; fiber optic cantilever beam microphone ; Fiber optics ; Finite element method ; gas sensor ; Gas sensors ; Microphones ; Photoacoustic cells ; Photoacoustic spectroscopy ; Resonance ; Resonant frequencies ; Sensitivity enhancement ; Sensors ; Spectrum analysis ; spherical photoacoustic cell</subject><ispartof>Microwave and optical technology letters, 2024-05, Vol.66 (5), p.n/a</ispartof><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1383-4f6c84da31626155311658bcfc5b39963f41a9beddb7cb00b49e878037ae0cc33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmop.34213$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmop.34213$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Zhu, Yongle</creatorcontrib><creatorcontrib>Guan, Yuchen</creatorcontrib><creatorcontrib>Jiang, Xu</creatorcontrib><creatorcontrib>Wu, Guojie</creatorcontrib><creatorcontrib>Gong, Zhenfeng</creatorcontrib><creatorcontrib>Wang, Xiaona</creatorcontrib><creatorcontrib>Tao, Pengcheng</creatorcontrib><creatorcontrib>Peng, Wei</creatorcontrib><creatorcontrib>Yu, Qingxu</creatorcontrib><creatorcontrib>Mei, Liang</creatorcontrib><title>A dual‐resonance enhanced photoacoustic spectroscopy gas sensor based on a fiber optic cantilever beam microphone and a spherical photoacoustic cell</title><title>Microwave and optical technology letters</title><description>We propose a novel high‐performance dual‐resonance enhanced photoacoustic spectroscopy (DRE‐PAS) gas sensor based on a highly sensitive fiber optic cantilever beam microphone and a high‐Q spherical photoacoustic cell (PAC). The first‐order resonant frequency (FORF) of the spherical PAC is analyzed by finite element analysis to match the FORF of the cantilever microphone for the double resonance enhancement of the photoacoustic signal. The photoacoustic spectroscopy (PAS) system, including the DRE‐PAS sensor, a 1532.8 nm distributed feedback laser, and a high‐speed spectrometer, has been successfully exploited for trace acetylene (C2H2) detection. The experimental results show that the limit of detection (LOD) is 106.8 parts‐per‐billion (ppb) with an integral time of 1 s, and the LOD can be further reduced to 11.03 ppb by Allan‐Werle deviation for 100 s integral time. The normalized noise equivalent absorption coefficient can be obtained as 2.44 × 10−8 cm−1 WHz−1/2. The reported DRE‐PAS gas sensor has the superior characteristics of photoacoustic signal enhancement, high sensitivity, and strong antielectromagnetic interference capability, which can provide a new solution for PAS development.</description><subject>Absorptivity</subject><subject>Acetylene</subject><subject>Cantilever beams</subject><subject>Distributed feedback lasers</subject><subject>dual‐resonance enhanced photoacoustic spectroscopy</subject><subject>fiber optic cantilever beam microphone</subject><subject>Fiber optics</subject><subject>Finite element method</subject><subject>gas sensor</subject><subject>Gas sensors</subject><subject>Microphones</subject><subject>Photoacoustic cells</subject><subject>Photoacoustic spectroscopy</subject><subject>Resonance</subject><subject>Resonant frequencies</subject><subject>Sensitivity enhancement</subject><subject>Sensors</subject><subject>Spectrum analysis</subject><subject>spherical photoacoustic cell</subject><issn>0895-2477</issn><issn>1098-2760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAUhS0EEqUw8AaWmBjS2nESJ2NV8ScVlQFmy3ZuaKrEDnYC6sYjMPGAPAkuYUJiOtLVd8_ROQidUzKjhMTz1nYzlsSUHaAJJUUexTwjh2hC8iKN4oTzY3Ti_ZYQwjiPJ-hzgctBNl_vHw68NdJowGA2ey1xt7G9ldoOvq819h3o3lmvbbfDz9JjD8Zbh5X0gbUGS1zVChy23R7X0vR1A6_hoEC2uK21s8HRAJamDLDvNuBqLZs_ORqa5hQdVbLxcParU_R0ffW4vI1W65u75WIVacpyFiVVpvOklIxmcUbTlFGapbnSlU4VK4qMVQmVhYKyVFwrQlRSQM7z0F0C0ZqxKboYfTtnXwbwvdjawZkQKRjJCA_GSRGoy5EKDbx3UInO1a10O0GJ2M8uwuziZ_bAzkf2LZTf_Q-K-_XD-PENh1CIOw</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Zhu, Yongle</creator><creator>Guan, Yuchen</creator><creator>Jiang, Xu</creator><creator>Wu, Guojie</creator><creator>Gong, Zhenfeng</creator><creator>Wang, Xiaona</creator><creator>Tao, Pengcheng</creator><creator>Peng, Wei</creator><creator>Yu, Qingxu</creator><creator>Mei, Liang</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>202405</creationdate><title>A dual‐resonance enhanced photoacoustic spectroscopy gas sensor based on a fiber optic cantilever beam microphone and a spherical photoacoustic cell</title><author>Zhu, Yongle ; Guan, Yuchen ; Jiang, Xu ; Wu, Guojie ; Gong, Zhenfeng ; Wang, Xiaona ; Tao, Pengcheng ; Peng, Wei ; Yu, Qingxu ; Mei, Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1383-4f6c84da31626155311658bcfc5b39963f41a9beddb7cb00b49e878037ae0cc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorptivity</topic><topic>Acetylene</topic><topic>Cantilever beams</topic><topic>Distributed feedback lasers</topic><topic>dual‐resonance enhanced photoacoustic spectroscopy</topic><topic>fiber optic cantilever beam microphone</topic><topic>Fiber optics</topic><topic>Finite element method</topic><topic>gas sensor</topic><topic>Gas sensors</topic><topic>Microphones</topic><topic>Photoacoustic cells</topic><topic>Photoacoustic spectroscopy</topic><topic>Resonance</topic><topic>Resonant frequencies</topic><topic>Sensitivity enhancement</topic><topic>Sensors</topic><topic>Spectrum analysis</topic><topic>spherical photoacoustic cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Yongle</creatorcontrib><creatorcontrib>Guan, Yuchen</creatorcontrib><creatorcontrib>Jiang, Xu</creatorcontrib><creatorcontrib>Wu, Guojie</creatorcontrib><creatorcontrib>Gong, Zhenfeng</creatorcontrib><creatorcontrib>Wang, Xiaona</creatorcontrib><creatorcontrib>Tao, Pengcheng</creatorcontrib><creatorcontrib>Peng, Wei</creatorcontrib><creatorcontrib>Yu, Qingxu</creatorcontrib><creatorcontrib>Mei, Liang</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Microwave and optical technology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Yongle</au><au>Guan, Yuchen</au><au>Jiang, Xu</au><au>Wu, Guojie</au><au>Gong, Zhenfeng</au><au>Wang, Xiaona</au><au>Tao, Pengcheng</au><au>Peng, Wei</au><au>Yu, Qingxu</au><au>Mei, Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A dual‐resonance enhanced photoacoustic spectroscopy gas sensor based on a fiber optic cantilever beam microphone and a spherical photoacoustic cell</atitle><jtitle>Microwave and optical technology letters</jtitle><date>2024-05</date><risdate>2024</risdate><volume>66</volume><issue>5</issue><epage>n/a</epage><issn>0895-2477</issn><eissn>1098-2760</eissn><abstract>We propose a novel high‐performance dual‐resonance enhanced photoacoustic spectroscopy (DRE‐PAS) gas sensor based on a highly sensitive fiber optic cantilever beam microphone and a high‐Q spherical photoacoustic cell (PAC). The first‐order resonant frequency (FORF) of the spherical PAC is analyzed by finite element analysis to match the FORF of the cantilever microphone for the double resonance enhancement of the photoacoustic signal. The photoacoustic spectroscopy (PAS) system, including the DRE‐PAS sensor, a 1532.8 nm distributed feedback laser, and a high‐speed spectrometer, has been successfully exploited for trace acetylene (C2H2) detection. The experimental results show that the limit of detection (LOD) is 106.8 parts‐per‐billion (ppb) with an integral time of 1 s, and the LOD can be further reduced to 11.03 ppb by Allan‐Werle deviation for 100 s integral time. The normalized noise equivalent absorption coefficient can be obtained as 2.44 × 10−8 cm−1 WHz−1/2. The reported DRE‐PAS gas sensor has the superior characteristics of photoacoustic signal enhancement, high sensitivity, and strong antielectromagnetic interference capability, which can provide a new solution for PAS development.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mop.34213</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0895-2477 |
ispartof | Microwave and optical technology letters, 2024-05, Vol.66 (5), p.n/a |
issn | 0895-2477 1098-2760 |
language | eng |
recordid | cdi_proquest_journals_3060731649 |
source | Wiley Online Library All Journals |
subjects | Absorptivity Acetylene Cantilever beams Distributed feedback lasers dual‐resonance enhanced photoacoustic spectroscopy fiber optic cantilever beam microphone Fiber optics Finite element method gas sensor Gas sensors Microphones Photoacoustic cells Photoacoustic spectroscopy Resonance Resonant frequencies Sensitivity enhancement Sensors Spectrum analysis spherical photoacoustic cell |
title | A dual‐resonance enhanced photoacoustic spectroscopy gas sensor based on a fiber optic cantilever beam microphone and a spherical photoacoustic cell |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T17%3A25%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20dual%E2%80%90resonance%20enhanced%20photoacoustic%20spectroscopy%20gas%20sensor%20based%20on%20a%20fiber%20optic%20cantilever%20beam%20microphone%20and%20a%20spherical%20photoacoustic%20cell&rft.jtitle=Microwave%20and%20optical%20technology%20letters&rft.au=Zhu,%20Yongle&rft.date=2024-05&rft.volume=66&rft.issue=5&rft.epage=n/a&rft.issn=0895-2477&rft.eissn=1098-2760&rft_id=info:doi/10.1002/mop.34213&rft_dat=%3Cproquest_cross%3E3060731649%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3060731649&rft_id=info:pmid/&rfr_iscdi=true |