An algorithm for construction of substitution box based on subfield of galois field GF(216) and dynamic linear fractional transformation
In block encryption algorithms the only nonlinear component, which creates confusion and diffusion, is substitution box (S-Box). Therefore, carefully selection of S-Box is an important task. In this article, an algorithm is presented for the construction of 8 × 8 S-Box based on all subfields of Galo...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2023-12, Vol.83 (19), p.56347-56368 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 56368 |
---|---|
container_issue | 19 |
container_start_page | 56347 |
container_title | Multimedia tools and applications |
container_volume | 83 |
creator | Zafar, Sohail Idrees, Bazgha Rashid, Tabasam |
description | In block encryption algorithms the only nonlinear component, which creates confusion and diffusion, is substitution box (S-Box). Therefore, carefully selection of S-Box is an important task. In this article, an algorithm is presented for the construction of
8
×
8
S-Box based on all subfields of Galois Field
G
F
2
16
and linear fractional transformation. Proposed algorithm is easy and simple but significantly complex for the attackers as it utilizes all subfields of
G
F
(
2
16
)
corresponding to all primitive irreducible polynomials for making
G
F
(
2
16
)
. An illustrating S-Box is also developed which is showing good structural characteristics such as it has no fixed point with 108.5 nonlinearity and 0.5020 strict avalanche. In the last, illustrated S-Box is applied on images for checking the performance under various criteria available in the literature. Obtained results of analyses are compared to well-known S-Boxes and found better in the comparison. |
doi_str_mv | 10.1007/s11042-023-17763-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3060078125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3060078125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b82435a078815c474ddb27f140e37134e1d547018f37bb63d0e211430193bb1a3</originalsourceid><addsrcrecordid>eNp9kEFPwyAYhhujiXP6BzyReNFDlQ9o6Y7L4qbJEi96JlBgsnRlQpvYf-DPlq0mevIEL9_7vnx5suwa8D1gzB8iAGYkx4TmwHlJ8-Ekm0DBac45gdM_9_PsIsYtxlAWhE2yr3mLZLPxwXXvO2R9QLVvYxf6unO-Rd6i2KvYua4_auU_kZLRaJREmlhnGn1wbWTjXUSjXi1vCZR3SLYa6aGVO1ejxrVGBmSDPDbLBnVBtjH9uJOHh8vszMommqufc5q9LR9fF0_5-mX1vJiv85rCrMtVRRgtJOZVBUXNONNaEW6BYUM5UGZAF4xjqCzlSpVUY0MAGMUwo0qBpNPsZuzdB__Rm9iJre9D2icKisvEsgJSJBcZXXXwMQZjxT64nQyDACwOxMVIXCTi4khcDClEx1BM5nZjwm_1P6lv-UWEyg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3060078125</pqid></control><display><type>article</type><title>An algorithm for construction of substitution box based on subfield of galois field GF(216) and dynamic linear fractional transformation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zafar, Sohail ; Idrees, Bazgha ; Rashid, Tabasam</creator><creatorcontrib>Zafar, Sohail ; Idrees, Bazgha ; Rashid, Tabasam</creatorcontrib><description>In block encryption algorithms the only nonlinear component, which creates confusion and diffusion, is substitution box (S-Box). Therefore, carefully selection of S-Box is an important task. In this article, an algorithm is presented for the construction of
8
×
8
S-Box based on all subfields of Galois Field
G
F
2
16
and linear fractional transformation. Proposed algorithm is easy and simple but significantly complex for the attackers as it utilizes all subfields of
G
F
(
2
16
)
corresponding to all primitive irreducible polynomials for making
G
F
(
2
16
)
. An illustrating S-Box is also developed which is showing good structural characteristics such as it has no fixed point with 108.5 nonlinearity and 0.5020 strict avalanche. In the last, illustrated S-Box is applied on images for checking the performance under various criteria available in the literature. Obtained results of analyses are compared to well-known S-Boxes and found better in the comparison.</description><identifier>ISSN: 1573-7721</identifier><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-023-17763-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Algorithms ; Computer Communication Networks ; Computer Science ; Construction ; Cryptography ; Data encryption ; Data Structures and Information Theory ; Diffusion barriers ; Multimedia ; Multimedia Information Systems ; Nonlinearity ; Polynomials ; Special Purpose and Application-Based Systems ; Substitutes</subject><ispartof>Multimedia tools and applications, 2023-12, Vol.83 (19), p.56347-56368</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b82435a078815c474ddb27f140e37134e1d547018f37bb63d0e211430193bb1a3</citedby><cites>FETCH-LOGICAL-c319t-b82435a078815c474ddb27f140e37134e1d547018f37bb63d0e211430193bb1a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-023-17763-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-023-17763-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zafar, Sohail</creatorcontrib><creatorcontrib>Idrees, Bazgha</creatorcontrib><creatorcontrib>Rashid, Tabasam</creatorcontrib><title>An algorithm for construction of substitution box based on subfield of galois field GF(216) and dynamic linear fractional transformation</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>In block encryption algorithms the only nonlinear component, which creates confusion and diffusion, is substitution box (S-Box). Therefore, carefully selection of S-Box is an important task. In this article, an algorithm is presented for the construction of
8
×
8
S-Box based on all subfields of Galois Field
G
F
2
16
and linear fractional transformation. Proposed algorithm is easy and simple but significantly complex for the attackers as it utilizes all subfields of
G
F
(
2
16
)
corresponding to all primitive irreducible polynomials for making
G
F
(
2
16
)
. An illustrating S-Box is also developed which is showing good structural characteristics such as it has no fixed point with 108.5 nonlinearity and 0.5020 strict avalanche. In the last, illustrated S-Box is applied on images for checking the performance under various criteria available in the literature. Obtained results of analyses are compared to well-known S-Boxes and found better in the comparison.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Construction</subject><subject>Cryptography</subject><subject>Data encryption</subject><subject>Data Structures and Information Theory</subject><subject>Diffusion barriers</subject><subject>Multimedia</subject><subject>Multimedia Information Systems</subject><subject>Nonlinearity</subject><subject>Polynomials</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Substitutes</subject><issn>1573-7721</issn><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEFPwyAYhhujiXP6BzyReNFDlQ9o6Y7L4qbJEi96JlBgsnRlQpvYf-DPlq0mevIEL9_7vnx5suwa8D1gzB8iAGYkx4TmwHlJ8-Ekm0DBac45gdM_9_PsIsYtxlAWhE2yr3mLZLPxwXXvO2R9QLVvYxf6unO-Rd6i2KvYua4_auU_kZLRaJREmlhnGn1wbWTjXUSjXi1vCZR3SLYa6aGVO1ejxrVGBmSDPDbLBnVBtjH9uJOHh8vszMommqufc5q9LR9fF0_5-mX1vJiv85rCrMtVRRgtJOZVBUXNONNaEW6BYUM5UGZAF4xjqCzlSpVUY0MAGMUwo0qBpNPsZuzdB__Rm9iJre9D2icKisvEsgJSJBcZXXXwMQZjxT64nQyDACwOxMVIXCTi4khcDClEx1BM5nZjwm_1P6lv-UWEyg</recordid><startdate>20231211</startdate><enddate>20231211</enddate><creator>Zafar, Sohail</creator><creator>Idrees, Bazgha</creator><creator>Rashid, Tabasam</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20231211</creationdate><title>An algorithm for construction of substitution box based on subfield of galois field GF(216) and dynamic linear fractional transformation</title><author>Zafar, Sohail ; Idrees, Bazgha ; Rashid, Tabasam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b82435a078815c474ddb27f140e37134e1d547018f37bb63d0e211430193bb1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Construction</topic><topic>Cryptography</topic><topic>Data encryption</topic><topic>Data Structures and Information Theory</topic><topic>Diffusion barriers</topic><topic>Multimedia</topic><topic>Multimedia Information Systems</topic><topic>Nonlinearity</topic><topic>Polynomials</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Substitutes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zafar, Sohail</creatorcontrib><creatorcontrib>Idrees, Bazgha</creatorcontrib><creatorcontrib>Rashid, Tabasam</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zafar, Sohail</au><au>Idrees, Bazgha</au><au>Rashid, Tabasam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An algorithm for construction of substitution box based on subfield of galois field GF(216) and dynamic linear fractional transformation</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2023-12-11</date><risdate>2023</risdate><volume>83</volume><issue>19</issue><spage>56347</spage><epage>56368</epage><pages>56347-56368</pages><issn>1573-7721</issn><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>In block encryption algorithms the only nonlinear component, which creates confusion and diffusion, is substitution box (S-Box). Therefore, carefully selection of S-Box is an important task. In this article, an algorithm is presented for the construction of
8
×
8
S-Box based on all subfields of Galois Field
G
F
2
16
and linear fractional transformation. Proposed algorithm is easy and simple but significantly complex for the attackers as it utilizes all subfields of
G
F
(
2
16
)
corresponding to all primitive irreducible polynomials for making
G
F
(
2
16
)
. An illustrating S-Box is also developed which is showing good structural characteristics such as it has no fixed point with 108.5 nonlinearity and 0.5020 strict avalanche. In the last, illustrated S-Box is applied on images for checking the performance under various criteria available in the literature. Obtained results of analyses are compared to well-known S-Boxes and found better in the comparison.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-023-17763-y</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1573-7721 |
ispartof | Multimedia tools and applications, 2023-12, Vol.83 (19), p.56347-56368 |
issn | 1573-7721 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_journals_3060078125 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algebra Algorithms Computer Communication Networks Computer Science Construction Cryptography Data encryption Data Structures and Information Theory Diffusion barriers Multimedia Multimedia Information Systems Nonlinearity Polynomials Special Purpose and Application-Based Systems Substitutes |
title | An algorithm for construction of substitution box based on subfield of galois field GF(216) and dynamic linear fractional transformation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A44%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20algorithm%20for%20construction%20of%20substitution%20box%20based%20on%20subfield%20of%20galois%20field%20GF(216)%20and%20dynamic%20linear%20fractional%20transformation&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Zafar,%20Sohail&rft.date=2023-12-11&rft.volume=83&rft.issue=19&rft.spage=56347&rft.epage=56368&rft.pages=56347-56368&rft.issn=1573-7721&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-023-17763-y&rft_dat=%3Cproquest_cross%3E3060078125%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3060078125&rft_id=info:pmid/&rfr_iscdi=true |