An algorithm for construction of substitution box based on subfield of galois field GF(216) and dynamic linear fractional transformation

In block encryption algorithms the only nonlinear component, which creates confusion and diffusion, is substitution box (S-Box). Therefore, carefully selection of S-Box is an important task. In this article, an algorithm is presented for the construction of 8 × 8 S-Box based on all subfields of Galo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2023-12, Vol.83 (19), p.56347-56368
Hauptverfasser: Zafar, Sohail, Idrees, Bazgha, Rashid, Tabasam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 56368
container_issue 19
container_start_page 56347
container_title Multimedia tools and applications
container_volume 83
creator Zafar, Sohail
Idrees, Bazgha
Rashid, Tabasam
description In block encryption algorithms the only nonlinear component, which creates confusion and diffusion, is substitution box (S-Box). Therefore, carefully selection of S-Box is an important task. In this article, an algorithm is presented for the construction of 8 × 8 S-Box based on all subfields of Galois Field G F 2 16 and linear fractional transformation. Proposed algorithm is easy and simple but significantly complex for the attackers as it utilizes all subfields of G F ( 2 16 ) corresponding to all primitive irreducible polynomials for making G F ( 2 16 ) . An illustrating S-Box is also developed which is showing good structural characteristics such as it has no fixed point with 108.5 nonlinearity and 0.5020 strict avalanche. In the last, illustrated S-Box is applied on images for checking the performance under various criteria available in the literature. Obtained results of analyses are compared to well-known S-Boxes and found better in the comparison.
doi_str_mv 10.1007/s11042-023-17763-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3060078125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3060078125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b82435a078815c474ddb27f140e37134e1d547018f37bb63d0e211430193bb1a3</originalsourceid><addsrcrecordid>eNp9kEFPwyAYhhujiXP6BzyReNFDlQ9o6Y7L4qbJEi96JlBgsnRlQpvYf-DPlq0mevIEL9_7vnx5suwa8D1gzB8iAGYkx4TmwHlJ8-Ekm0DBac45gdM_9_PsIsYtxlAWhE2yr3mLZLPxwXXvO2R9QLVvYxf6unO-Rd6i2KvYua4_auU_kZLRaJREmlhnGn1wbWTjXUSjXi1vCZR3SLYa6aGVO1ejxrVGBmSDPDbLBnVBtjH9uJOHh8vszMommqufc5q9LR9fF0_5-mX1vJiv85rCrMtVRRgtJOZVBUXNONNaEW6BYUM5UGZAF4xjqCzlSpVUY0MAGMUwo0qBpNPsZuzdB__Rm9iJre9D2icKisvEsgJSJBcZXXXwMQZjxT64nQyDACwOxMVIXCTi4khcDClEx1BM5nZjwm_1P6lv-UWEyg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3060078125</pqid></control><display><type>article</type><title>An algorithm for construction of substitution box based on subfield of galois field GF(216) and dynamic linear fractional transformation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zafar, Sohail ; Idrees, Bazgha ; Rashid, Tabasam</creator><creatorcontrib>Zafar, Sohail ; Idrees, Bazgha ; Rashid, Tabasam</creatorcontrib><description>In block encryption algorithms the only nonlinear component, which creates confusion and diffusion, is substitution box (S-Box). Therefore, carefully selection of S-Box is an important task. In this article, an algorithm is presented for the construction of 8 × 8 S-Box based on all subfields of Galois Field G F 2 16 and linear fractional transformation. Proposed algorithm is easy and simple but significantly complex for the attackers as it utilizes all subfields of G F ( 2 16 ) corresponding to all primitive irreducible polynomials for making G F ( 2 16 ) . An illustrating S-Box is also developed which is showing good structural characteristics such as it has no fixed point with 108.5 nonlinearity and 0.5020 strict avalanche. In the last, illustrated S-Box is applied on images for checking the performance under various criteria available in the literature. Obtained results of analyses are compared to well-known S-Boxes and found better in the comparison.</description><identifier>ISSN: 1573-7721</identifier><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-023-17763-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Algorithms ; Computer Communication Networks ; Computer Science ; Construction ; Cryptography ; Data encryption ; Data Structures and Information Theory ; Diffusion barriers ; Multimedia ; Multimedia Information Systems ; Nonlinearity ; Polynomials ; Special Purpose and Application-Based Systems ; Substitutes</subject><ispartof>Multimedia tools and applications, 2023-12, Vol.83 (19), p.56347-56368</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b82435a078815c474ddb27f140e37134e1d547018f37bb63d0e211430193bb1a3</citedby><cites>FETCH-LOGICAL-c319t-b82435a078815c474ddb27f140e37134e1d547018f37bb63d0e211430193bb1a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-023-17763-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-023-17763-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zafar, Sohail</creatorcontrib><creatorcontrib>Idrees, Bazgha</creatorcontrib><creatorcontrib>Rashid, Tabasam</creatorcontrib><title>An algorithm for construction of substitution box based on subfield of galois field GF(216) and dynamic linear fractional transformation</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>In block encryption algorithms the only nonlinear component, which creates confusion and diffusion, is substitution box (S-Box). Therefore, carefully selection of S-Box is an important task. In this article, an algorithm is presented for the construction of 8 × 8 S-Box based on all subfields of Galois Field G F 2 16 and linear fractional transformation. Proposed algorithm is easy and simple but significantly complex for the attackers as it utilizes all subfields of G F ( 2 16 ) corresponding to all primitive irreducible polynomials for making G F ( 2 16 ) . An illustrating S-Box is also developed which is showing good structural characteristics such as it has no fixed point with 108.5 nonlinearity and 0.5020 strict avalanche. In the last, illustrated S-Box is applied on images for checking the performance under various criteria available in the literature. Obtained results of analyses are compared to well-known S-Boxes and found better in the comparison.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Construction</subject><subject>Cryptography</subject><subject>Data encryption</subject><subject>Data Structures and Information Theory</subject><subject>Diffusion barriers</subject><subject>Multimedia</subject><subject>Multimedia Information Systems</subject><subject>Nonlinearity</subject><subject>Polynomials</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Substitutes</subject><issn>1573-7721</issn><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEFPwyAYhhujiXP6BzyReNFDlQ9o6Y7L4qbJEi96JlBgsnRlQpvYf-DPlq0mevIEL9_7vnx5suwa8D1gzB8iAGYkx4TmwHlJ8-Ekm0DBac45gdM_9_PsIsYtxlAWhE2yr3mLZLPxwXXvO2R9QLVvYxf6unO-Rd6i2KvYua4_auU_kZLRaJREmlhnGn1wbWTjXUSjXi1vCZR3SLYa6aGVO1ejxrVGBmSDPDbLBnVBtjH9uJOHh8vszMommqufc5q9LR9fF0_5-mX1vJiv85rCrMtVRRgtJOZVBUXNONNaEW6BYUM5UGZAF4xjqCzlSpVUY0MAGMUwo0qBpNPsZuzdB__Rm9iJre9D2icKisvEsgJSJBcZXXXwMQZjxT64nQyDACwOxMVIXCTi4khcDClEx1BM5nZjwm_1P6lv-UWEyg</recordid><startdate>20231211</startdate><enddate>20231211</enddate><creator>Zafar, Sohail</creator><creator>Idrees, Bazgha</creator><creator>Rashid, Tabasam</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20231211</creationdate><title>An algorithm for construction of substitution box based on subfield of galois field GF(216) and dynamic linear fractional transformation</title><author>Zafar, Sohail ; Idrees, Bazgha ; Rashid, Tabasam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b82435a078815c474ddb27f140e37134e1d547018f37bb63d0e211430193bb1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Construction</topic><topic>Cryptography</topic><topic>Data encryption</topic><topic>Data Structures and Information Theory</topic><topic>Diffusion barriers</topic><topic>Multimedia</topic><topic>Multimedia Information Systems</topic><topic>Nonlinearity</topic><topic>Polynomials</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Substitutes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zafar, Sohail</creatorcontrib><creatorcontrib>Idrees, Bazgha</creatorcontrib><creatorcontrib>Rashid, Tabasam</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zafar, Sohail</au><au>Idrees, Bazgha</au><au>Rashid, Tabasam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An algorithm for construction of substitution box based on subfield of galois field GF(216) and dynamic linear fractional transformation</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2023-12-11</date><risdate>2023</risdate><volume>83</volume><issue>19</issue><spage>56347</spage><epage>56368</epage><pages>56347-56368</pages><issn>1573-7721</issn><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>In block encryption algorithms the only nonlinear component, which creates confusion and diffusion, is substitution box (S-Box). Therefore, carefully selection of S-Box is an important task. In this article, an algorithm is presented for the construction of 8 × 8 S-Box based on all subfields of Galois Field G F 2 16 and linear fractional transformation. Proposed algorithm is easy and simple but significantly complex for the attackers as it utilizes all subfields of G F ( 2 16 ) corresponding to all primitive irreducible polynomials for making G F ( 2 16 ) . An illustrating S-Box is also developed which is showing good structural characteristics such as it has no fixed point with 108.5 nonlinearity and 0.5020 strict avalanche. In the last, illustrated S-Box is applied on images for checking the performance under various criteria available in the literature. Obtained results of analyses are compared to well-known S-Boxes and found better in the comparison.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-023-17763-y</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1573-7721
ispartof Multimedia tools and applications, 2023-12, Vol.83 (19), p.56347-56368
issn 1573-7721
1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_3060078125
source SpringerLink Journals - AutoHoldings
subjects Algebra
Algorithms
Computer Communication Networks
Computer Science
Construction
Cryptography
Data encryption
Data Structures and Information Theory
Diffusion barriers
Multimedia
Multimedia Information Systems
Nonlinearity
Polynomials
Special Purpose and Application-Based Systems
Substitutes
title An algorithm for construction of substitution box based on subfield of galois field GF(216) and dynamic linear fractional transformation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A44%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20algorithm%20for%20construction%20of%20substitution%20box%20based%20on%20subfield%20of%20galois%20field%20GF(216)%20and%20dynamic%20linear%20fractional%20transformation&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Zafar,%20Sohail&rft.date=2023-12-11&rft.volume=83&rft.issue=19&rft.spage=56347&rft.epage=56368&rft.pages=56347-56368&rft.issn=1573-7721&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-023-17763-y&rft_dat=%3Cproquest_cross%3E3060078125%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3060078125&rft_id=info:pmid/&rfr_iscdi=true