Impact of Hill Fires on Dissolved Organic Matter in Watersheds of Karst Areas Based on Three-Dimensional Fluorescence-Parallel Factor Analysis
Hill fires have the potential to influence dissolved organic matter (DOM) in water bodies, yet fewer studies have investigated the effects of hill fires on DOM within watersheds in karst areas. In this study, we employed the three-dimensional fluorescence-parallel factor analysis (EEM-PARAFAC) metho...
Gespeichert in:
Veröffentlicht in: | Water (Basel) 2024-05, Vol.16 (10), p.1346 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hill fires have the potential to influence dissolved organic matter (DOM) in water bodies, yet fewer studies have investigated the effects of hill fires on DOM within watersheds in karst areas. In this study, we employed the three-dimensional fluorescence-parallel factor analysis (EEM-PARAFAC) method to analyze the DOM fluorescence peaks, component compositions, fluorescence indices, and sources within the water body of the Yuanteng River sub-basin, which was impacted by the hill fire, serving as our primary research focus. The results indicate the presence of three primary fluorescent fractions in the water body of the Yuanteng River: C1, resembling humic acid (fulvic acid); C2, consisting of biopolymers and microbial by-products; and C3, containing proteins such as tyrosine and tryptophan. The Yuanteng River exhibited elevated levels of humus-like substances, diminished concentrations of protein-like substances, and demonstrated higher biogenic, freshness, and humification indices compared to unaffected water samples, reflecting the impact of the hill fire. Elevated levels of exogenous humic acid-like inputs into the waters of the Yuanteng River, along with exogenous inputs of DOM, were primarily influenced by stable, high-molecular-weight organic matter. Additionally, agricultural effluent, domestic sewage, and anthropogenic activities contributed to these inputs to a lesser degree. The impacts of endogenous inputs are mainly related to the restoration of ecosystems. The occurrence of hill fires has significantly influenced the composition of dissolved organic matter in the waters of the Yuanteng River. A comprehensive analysis of the impacts of hill fires on dissolved organic matter in water bodies can serve as a valuable reference for characterizing DOM in the water bodies of the Yuanteng River. Furthermore, it can inform strategies for environmental protection, facilitate the traceability of pollutants in water bodies, and contribute to environmental and ecological restoration efforts following hill fires in the region. |
---|---|
ISSN: | 2073-4441 2073-4441 |
DOI: | 10.3390/w16101346 |