A Greenhouse Gas Footprint Analysis of Advanced Hardware Technologies in Connected Autonomous Vehicles
Greenhouse gas emissions are a critical concern for China’s automotive industry, especially for passenger cars due to their high sales’ volume. Recently, the trend towards connected and autonomous driving vehicles has been significant in the passenger car market. However, the impact of these systems...
Gespeichert in:
Veröffentlicht in: | Sustainability 2024-05, Vol.16 (10), p.4090 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 4090 |
container_title | Sustainability |
container_volume | 16 |
creator | Zhang, Haoyi Zhao, Fuquan Song, Haokun Hao, Han Liu, Zongwei |
description | Greenhouse gas emissions are a critical concern for China’s automotive industry, especially for passenger cars due to their high sales’ volume. Recently, the trend towards connected and autonomous driving vehicles has been significant in the passenger car market. However, the impact of these systems on the life cycle emissions of vehicles remains unclear. This paper focuses on system function levels from driver assistance to full driving automation and studies their life cycle greenhouse gas emissions. This research establishes a component list for the hardware system and a material inventory. Then, this paper reveals significant differences in total system emissions at these technology levels, 540.1 kg for primary, 1318.7 kg for medium, and 2279.2 kg for advanced systems. Despite this difference, the total is less than 7.23% of the total vehicle emissions. To further reduce this portion of GHG emissions, it is recommended that vehicles favor millimeter-wave radar over solid-state LiDAR in their sensing system hardware, coupled with cameras as the primary sensing element. In addition, Intelligent Hardware Systems are not recommended for internal combustion engine passenger cars for optimal balance between functionality and environmental impact. |
doi_str_mv | 10.3390/su16104090 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3059690682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A795445555</galeid><sourcerecordid>A795445555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-350fbab26f1e29acbf91b384b85ab0404244bde1dd1058c3cb778129340a51df3</originalsourceid><addsrcrecordid>eNpVkU1LAzEQhoMoWGov_oKAJ4XWZLNfOS5F20JB0Oo1ZLOTdss2qUlW7b83UkE7c5hheOaFdwaha0omjHFy73uaU5ISTs7QICEFHVOSkfN__SUaeb8lMRijnOYDpCs8cwBmY3sPeCY9frQ27F1rAq6M7A6-9dhqXDUf0iho8Fy65lM6wCtQG2M7u27B49bgqTUGVIhI1Qdr7C4q4jfYtKoDf4UutOw8jH7rEL0-Pqym8_HyabaYVsuxSrIijFlGdC3rJNcUEi5VrTmtWZnWZSbr6CxN0rRugDZNdFMqpuqiKGnCWUpkRhvNhujmqLt39r0HH8TW9i768IKRjOec5GUSqcmRWssORGu0DU6qmA3sWmUN6DbOq4JnaZrFiAu3JwuRCfAV1rL3Xixenk_ZuyOrnPXegRbxmjvpDoIS8fMn8fcn9g1JxYPx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3059690682</pqid></control><display><type>article</type><title>A Greenhouse Gas Footprint Analysis of Advanced Hardware Technologies in Connected Autonomous Vehicles</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Zhang, Haoyi ; Zhao, Fuquan ; Song, Haokun ; Hao, Han ; Liu, Zongwei</creator><creatorcontrib>Zhang, Haoyi ; Zhao, Fuquan ; Song, Haokun ; Hao, Han ; Liu, Zongwei</creatorcontrib><description>Greenhouse gas emissions are a critical concern for China’s automotive industry, especially for passenger cars due to their high sales’ volume. Recently, the trend towards connected and autonomous driving vehicles has been significant in the passenger car market. However, the impact of these systems on the life cycle emissions of vehicles remains unclear. This paper focuses on system function levels from driver assistance to full driving automation and studies their life cycle greenhouse gas emissions. This research establishes a component list for the hardware system and a material inventory. Then, this paper reveals significant differences in total system emissions at these technology levels, 540.1 kg for primary, 1318.7 kg for medium, and 2279.2 kg for advanced systems. Despite this difference, the total is less than 7.23% of the total vehicle emissions. To further reduce this portion of GHG emissions, it is recommended that vehicles favor millimeter-wave radar over solid-state LiDAR in their sensing system hardware, coupled with cameras as the primary sensing element. In addition, Intelligent Hardware Systems are not recommended for internal combustion engine passenger cars for optimal balance between functionality and environmental impact.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su16104090</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Air pollution ; Air quality management ; Automation ; Automobile industry ; Automobile sales ; Automotive emissions ; Autonomous vehicles ; Carbon ; Combustion ; Driverless cars ; Economic growth ; Electric vehicles ; Emission standards ; Emissions ; Energy consumption ; Forecasts and trends ; GDP ; Global positioning systems ; GPS ; Greenhouse gases ; Gross Domestic Product ; Market shares ; OEM ; Optical radar ; Remote sensing ; Roads & highways ; Technology application ; Transportation equipment industry</subject><ispartof>Sustainability, 2024-05, Vol.16 (10), p.4090</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c257t-350fbab26f1e29acbf91b384b85ab0404244bde1dd1058c3cb778129340a51df3</cites><orcidid>0009-0006-1850-0849 ; 0000-0001-7542-4746 ; 0000-0001-6814-8851</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Haoyi</creatorcontrib><creatorcontrib>Zhao, Fuquan</creatorcontrib><creatorcontrib>Song, Haokun</creatorcontrib><creatorcontrib>Hao, Han</creatorcontrib><creatorcontrib>Liu, Zongwei</creatorcontrib><title>A Greenhouse Gas Footprint Analysis of Advanced Hardware Technologies in Connected Autonomous Vehicles</title><title>Sustainability</title><description>Greenhouse gas emissions are a critical concern for China’s automotive industry, especially for passenger cars due to their high sales’ volume. Recently, the trend towards connected and autonomous driving vehicles has been significant in the passenger car market. However, the impact of these systems on the life cycle emissions of vehicles remains unclear. This paper focuses on system function levels from driver assistance to full driving automation and studies their life cycle greenhouse gas emissions. This research establishes a component list for the hardware system and a material inventory. Then, this paper reveals significant differences in total system emissions at these technology levels, 540.1 kg for primary, 1318.7 kg for medium, and 2279.2 kg for advanced systems. Despite this difference, the total is less than 7.23% of the total vehicle emissions. To further reduce this portion of GHG emissions, it is recommended that vehicles favor millimeter-wave radar over solid-state LiDAR in their sensing system hardware, coupled with cameras as the primary sensing element. In addition, Intelligent Hardware Systems are not recommended for internal combustion engine passenger cars for optimal balance between functionality and environmental impact.</description><subject>Air pollution</subject><subject>Air quality management</subject><subject>Automation</subject><subject>Automobile industry</subject><subject>Automobile sales</subject><subject>Automotive emissions</subject><subject>Autonomous vehicles</subject><subject>Carbon</subject><subject>Combustion</subject><subject>Driverless cars</subject><subject>Economic growth</subject><subject>Electric vehicles</subject><subject>Emission standards</subject><subject>Emissions</subject><subject>Energy consumption</subject><subject>Forecasts and trends</subject><subject>GDP</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Greenhouse gases</subject><subject>Gross Domestic Product</subject><subject>Market shares</subject><subject>OEM</subject><subject>Optical radar</subject><subject>Remote sensing</subject><subject>Roads & highways</subject><subject>Technology application</subject><subject>Transportation equipment industry</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkU1LAzEQhoMoWGov_oKAJ4XWZLNfOS5F20JB0Oo1ZLOTdss2qUlW7b83UkE7c5hheOaFdwaha0omjHFy73uaU5ISTs7QICEFHVOSkfN__SUaeb8lMRijnOYDpCs8cwBmY3sPeCY9frQ27F1rAq6M7A6-9dhqXDUf0iho8Fy65lM6wCtQG2M7u27B49bgqTUGVIhI1Qdr7C4q4jfYtKoDf4UutOw8jH7rEL0-Pqym8_HyabaYVsuxSrIijFlGdC3rJNcUEi5VrTmtWZnWZSbr6CxN0rRugDZNdFMqpuqiKGnCWUpkRhvNhujmqLt39r0HH8TW9i768IKRjOec5GUSqcmRWssORGu0DU6qmA3sWmUN6DbOq4JnaZrFiAu3JwuRCfAV1rL3Xixenk_ZuyOrnPXegRbxmjvpDoIS8fMn8fcn9g1JxYPx</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Zhang, Haoyi</creator><creator>Zhao, Fuquan</creator><creator>Song, Haokun</creator><creator>Hao, Han</creator><creator>Liu, Zongwei</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0009-0006-1850-0849</orcidid><orcidid>https://orcid.org/0000-0001-7542-4746</orcidid><orcidid>https://orcid.org/0000-0001-6814-8851</orcidid></search><sort><creationdate>20240501</creationdate><title>A Greenhouse Gas Footprint Analysis of Advanced Hardware Technologies in Connected Autonomous Vehicles</title><author>Zhang, Haoyi ; Zhao, Fuquan ; Song, Haokun ; Hao, Han ; Liu, Zongwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-350fbab26f1e29acbf91b384b85ab0404244bde1dd1058c3cb778129340a51df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Air pollution</topic><topic>Air quality management</topic><topic>Automation</topic><topic>Automobile industry</topic><topic>Automobile sales</topic><topic>Automotive emissions</topic><topic>Autonomous vehicles</topic><topic>Carbon</topic><topic>Combustion</topic><topic>Driverless cars</topic><topic>Economic growth</topic><topic>Electric vehicles</topic><topic>Emission standards</topic><topic>Emissions</topic><topic>Energy consumption</topic><topic>Forecasts and trends</topic><topic>GDP</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Greenhouse gases</topic><topic>Gross Domestic Product</topic><topic>Market shares</topic><topic>OEM</topic><topic>Optical radar</topic><topic>Remote sensing</topic><topic>Roads & highways</topic><topic>Technology application</topic><topic>Transportation equipment industry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Haoyi</creatorcontrib><creatorcontrib>Zhao, Fuquan</creatorcontrib><creatorcontrib>Song, Haokun</creatorcontrib><creatorcontrib>Hao, Han</creatorcontrib><creatorcontrib>Liu, Zongwei</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Haoyi</au><au>Zhao, Fuquan</au><au>Song, Haokun</au><au>Hao, Han</au><au>Liu, Zongwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Greenhouse Gas Footprint Analysis of Advanced Hardware Technologies in Connected Autonomous Vehicles</atitle><jtitle>Sustainability</jtitle><date>2024-05-01</date><risdate>2024</risdate><volume>16</volume><issue>10</issue><spage>4090</spage><pages>4090-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>Greenhouse gas emissions are a critical concern for China’s automotive industry, especially for passenger cars due to their high sales’ volume. Recently, the trend towards connected and autonomous driving vehicles has been significant in the passenger car market. However, the impact of these systems on the life cycle emissions of vehicles remains unclear. This paper focuses on system function levels from driver assistance to full driving automation and studies their life cycle greenhouse gas emissions. This research establishes a component list for the hardware system and a material inventory. Then, this paper reveals significant differences in total system emissions at these technology levels, 540.1 kg for primary, 1318.7 kg for medium, and 2279.2 kg for advanced systems. Despite this difference, the total is less than 7.23% of the total vehicle emissions. To further reduce this portion of GHG emissions, it is recommended that vehicles favor millimeter-wave radar over solid-state LiDAR in their sensing system hardware, coupled with cameras as the primary sensing element. In addition, Intelligent Hardware Systems are not recommended for internal combustion engine passenger cars for optimal balance between functionality and environmental impact.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su16104090</doi><orcidid>https://orcid.org/0009-0006-1850-0849</orcidid><orcidid>https://orcid.org/0000-0001-7542-4746</orcidid><orcidid>https://orcid.org/0000-0001-6814-8851</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2071-1050 |
ispartof | Sustainability, 2024-05, Vol.16 (10), p.4090 |
issn | 2071-1050 2071-1050 |
language | eng |
recordid | cdi_proquest_journals_3059690682 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute |
subjects | Air pollution Air quality management Automation Automobile industry Automobile sales Automotive emissions Autonomous vehicles Carbon Combustion Driverless cars Economic growth Electric vehicles Emission standards Emissions Energy consumption Forecasts and trends GDP Global positioning systems GPS Greenhouse gases Gross Domestic Product Market shares OEM Optical radar Remote sensing Roads & highways Technology application Transportation equipment industry |
title | A Greenhouse Gas Footprint Analysis of Advanced Hardware Technologies in Connected Autonomous Vehicles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A35%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Greenhouse%20Gas%20Footprint%20Analysis%20of%20Advanced%20Hardware%20Technologies%20in%20Connected%20Autonomous%20Vehicles&rft.jtitle=Sustainability&rft.au=Zhang,%20Haoyi&rft.date=2024-05-01&rft.volume=16&rft.issue=10&rft.spage=4090&rft.pages=4090-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su16104090&rft_dat=%3Cgale_proqu%3EA795445555%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3059690682&rft_id=info:pmid/&rft_galeid=A795445555&rfr_iscdi=true |