A Greenhouse Gas Footprint Analysis of Advanced Hardware Technologies in Connected Autonomous Vehicles

Greenhouse gas emissions are a critical concern for China’s automotive industry, especially for passenger cars due to their high sales’ volume. Recently, the trend towards connected and autonomous driving vehicles has been significant in the passenger car market. However, the impact of these systems...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2024-05, Vol.16 (10), p.4090
Hauptverfasser: Zhang, Haoyi, Zhao, Fuquan, Song, Haokun, Hao, Han, Liu, Zongwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 4090
container_title Sustainability
container_volume 16
creator Zhang, Haoyi
Zhao, Fuquan
Song, Haokun
Hao, Han
Liu, Zongwei
description Greenhouse gas emissions are a critical concern for China’s automotive industry, especially for passenger cars due to their high sales’ volume. Recently, the trend towards connected and autonomous driving vehicles has been significant in the passenger car market. However, the impact of these systems on the life cycle emissions of vehicles remains unclear. This paper focuses on system function levels from driver assistance to full driving automation and studies their life cycle greenhouse gas emissions. This research establishes a component list for the hardware system and a material inventory. Then, this paper reveals significant differences in total system emissions at these technology levels, 540.1 kg for primary, 1318.7 kg for medium, and 2279.2 kg for advanced systems. Despite this difference, the total is less than 7.23% of the total vehicle emissions. To further reduce this portion of GHG emissions, it is recommended that vehicles favor millimeter-wave radar over solid-state LiDAR in their sensing system hardware, coupled with cameras as the primary sensing element. In addition, Intelligent Hardware Systems are not recommended for internal combustion engine passenger cars for optimal balance between functionality and environmental impact.
doi_str_mv 10.3390/su16104090
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3059690682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A795445555</galeid><sourcerecordid>A795445555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-350fbab26f1e29acbf91b384b85ab0404244bde1dd1058c3cb778129340a51df3</originalsourceid><addsrcrecordid>eNpVkU1LAzEQhoMoWGov_oKAJ4XWZLNfOS5F20JB0Oo1ZLOTdss2qUlW7b83UkE7c5hheOaFdwaha0omjHFy73uaU5ISTs7QICEFHVOSkfN__SUaeb8lMRijnOYDpCs8cwBmY3sPeCY9frQ27F1rAq6M7A6-9dhqXDUf0iho8Fy65lM6wCtQG2M7u27B49bgqTUGVIhI1Qdr7C4q4jfYtKoDf4UutOw8jH7rEL0-Pqym8_HyabaYVsuxSrIijFlGdC3rJNcUEi5VrTmtWZnWZSbr6CxN0rRugDZNdFMqpuqiKGnCWUpkRhvNhujmqLt39r0HH8TW9i768IKRjOec5GUSqcmRWssORGu0DU6qmA3sWmUN6DbOq4JnaZrFiAu3JwuRCfAV1rL3Xixenk_ZuyOrnPXegRbxmjvpDoIS8fMn8fcn9g1JxYPx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3059690682</pqid></control><display><type>article</type><title>A Greenhouse Gas Footprint Analysis of Advanced Hardware Technologies in Connected Autonomous Vehicles</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Zhang, Haoyi ; Zhao, Fuquan ; Song, Haokun ; Hao, Han ; Liu, Zongwei</creator><creatorcontrib>Zhang, Haoyi ; Zhao, Fuquan ; Song, Haokun ; Hao, Han ; Liu, Zongwei</creatorcontrib><description>Greenhouse gas emissions are a critical concern for China’s automotive industry, especially for passenger cars due to their high sales’ volume. Recently, the trend towards connected and autonomous driving vehicles has been significant in the passenger car market. However, the impact of these systems on the life cycle emissions of vehicles remains unclear. This paper focuses on system function levels from driver assistance to full driving automation and studies their life cycle greenhouse gas emissions. This research establishes a component list for the hardware system and a material inventory. Then, this paper reveals significant differences in total system emissions at these technology levels, 540.1 kg for primary, 1318.7 kg for medium, and 2279.2 kg for advanced systems. Despite this difference, the total is less than 7.23% of the total vehicle emissions. To further reduce this portion of GHG emissions, it is recommended that vehicles favor millimeter-wave radar over solid-state LiDAR in their sensing system hardware, coupled with cameras as the primary sensing element. In addition, Intelligent Hardware Systems are not recommended for internal combustion engine passenger cars for optimal balance between functionality and environmental impact.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su16104090</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Air pollution ; Air quality management ; Automation ; Automobile industry ; Automobile sales ; Automotive emissions ; Autonomous vehicles ; Carbon ; Combustion ; Driverless cars ; Economic growth ; Electric vehicles ; Emission standards ; Emissions ; Energy consumption ; Forecasts and trends ; GDP ; Global positioning systems ; GPS ; Greenhouse gases ; Gross Domestic Product ; Market shares ; OEM ; Optical radar ; Remote sensing ; Roads &amp; highways ; Technology application ; Transportation equipment industry</subject><ispartof>Sustainability, 2024-05, Vol.16 (10), p.4090</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c257t-350fbab26f1e29acbf91b384b85ab0404244bde1dd1058c3cb778129340a51df3</cites><orcidid>0009-0006-1850-0849 ; 0000-0001-7542-4746 ; 0000-0001-6814-8851</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Haoyi</creatorcontrib><creatorcontrib>Zhao, Fuquan</creatorcontrib><creatorcontrib>Song, Haokun</creatorcontrib><creatorcontrib>Hao, Han</creatorcontrib><creatorcontrib>Liu, Zongwei</creatorcontrib><title>A Greenhouse Gas Footprint Analysis of Advanced Hardware Technologies in Connected Autonomous Vehicles</title><title>Sustainability</title><description>Greenhouse gas emissions are a critical concern for China’s automotive industry, especially for passenger cars due to their high sales’ volume. Recently, the trend towards connected and autonomous driving vehicles has been significant in the passenger car market. However, the impact of these systems on the life cycle emissions of vehicles remains unclear. This paper focuses on system function levels from driver assistance to full driving automation and studies their life cycle greenhouse gas emissions. This research establishes a component list for the hardware system and a material inventory. Then, this paper reveals significant differences in total system emissions at these technology levels, 540.1 kg for primary, 1318.7 kg for medium, and 2279.2 kg for advanced systems. Despite this difference, the total is less than 7.23% of the total vehicle emissions. To further reduce this portion of GHG emissions, it is recommended that vehicles favor millimeter-wave radar over solid-state LiDAR in their sensing system hardware, coupled with cameras as the primary sensing element. In addition, Intelligent Hardware Systems are not recommended for internal combustion engine passenger cars for optimal balance between functionality and environmental impact.</description><subject>Air pollution</subject><subject>Air quality management</subject><subject>Automation</subject><subject>Automobile industry</subject><subject>Automobile sales</subject><subject>Automotive emissions</subject><subject>Autonomous vehicles</subject><subject>Carbon</subject><subject>Combustion</subject><subject>Driverless cars</subject><subject>Economic growth</subject><subject>Electric vehicles</subject><subject>Emission standards</subject><subject>Emissions</subject><subject>Energy consumption</subject><subject>Forecasts and trends</subject><subject>GDP</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Greenhouse gases</subject><subject>Gross Domestic Product</subject><subject>Market shares</subject><subject>OEM</subject><subject>Optical radar</subject><subject>Remote sensing</subject><subject>Roads &amp; highways</subject><subject>Technology application</subject><subject>Transportation equipment industry</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkU1LAzEQhoMoWGov_oKAJ4XWZLNfOS5F20JB0Oo1ZLOTdss2qUlW7b83UkE7c5hheOaFdwaha0omjHFy73uaU5ISTs7QICEFHVOSkfN__SUaeb8lMRijnOYDpCs8cwBmY3sPeCY9frQ27F1rAq6M7A6-9dhqXDUf0iho8Fy65lM6wCtQG2M7u27B49bgqTUGVIhI1Qdr7C4q4jfYtKoDf4UutOw8jH7rEL0-Pqym8_HyabaYVsuxSrIijFlGdC3rJNcUEi5VrTmtWZnWZSbr6CxN0rRugDZNdFMqpuqiKGnCWUpkRhvNhujmqLt39r0HH8TW9i768IKRjOec5GUSqcmRWssORGu0DU6qmA3sWmUN6DbOq4JnaZrFiAu3JwuRCfAV1rL3Xixenk_ZuyOrnPXegRbxmjvpDoIS8fMn8fcn9g1JxYPx</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Zhang, Haoyi</creator><creator>Zhao, Fuquan</creator><creator>Song, Haokun</creator><creator>Hao, Han</creator><creator>Liu, Zongwei</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0009-0006-1850-0849</orcidid><orcidid>https://orcid.org/0000-0001-7542-4746</orcidid><orcidid>https://orcid.org/0000-0001-6814-8851</orcidid></search><sort><creationdate>20240501</creationdate><title>A Greenhouse Gas Footprint Analysis of Advanced Hardware Technologies in Connected Autonomous Vehicles</title><author>Zhang, Haoyi ; Zhao, Fuquan ; Song, Haokun ; Hao, Han ; Liu, Zongwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-350fbab26f1e29acbf91b384b85ab0404244bde1dd1058c3cb778129340a51df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Air pollution</topic><topic>Air quality management</topic><topic>Automation</topic><topic>Automobile industry</topic><topic>Automobile sales</topic><topic>Automotive emissions</topic><topic>Autonomous vehicles</topic><topic>Carbon</topic><topic>Combustion</topic><topic>Driverless cars</topic><topic>Economic growth</topic><topic>Electric vehicles</topic><topic>Emission standards</topic><topic>Emissions</topic><topic>Energy consumption</topic><topic>Forecasts and trends</topic><topic>GDP</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Greenhouse gases</topic><topic>Gross Domestic Product</topic><topic>Market shares</topic><topic>OEM</topic><topic>Optical radar</topic><topic>Remote sensing</topic><topic>Roads &amp; highways</topic><topic>Technology application</topic><topic>Transportation equipment industry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Haoyi</creatorcontrib><creatorcontrib>Zhao, Fuquan</creatorcontrib><creatorcontrib>Song, Haokun</creatorcontrib><creatorcontrib>Hao, Han</creatorcontrib><creatorcontrib>Liu, Zongwei</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Haoyi</au><au>Zhao, Fuquan</au><au>Song, Haokun</au><au>Hao, Han</au><au>Liu, Zongwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Greenhouse Gas Footprint Analysis of Advanced Hardware Technologies in Connected Autonomous Vehicles</atitle><jtitle>Sustainability</jtitle><date>2024-05-01</date><risdate>2024</risdate><volume>16</volume><issue>10</issue><spage>4090</spage><pages>4090-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>Greenhouse gas emissions are a critical concern for China’s automotive industry, especially for passenger cars due to their high sales’ volume. Recently, the trend towards connected and autonomous driving vehicles has been significant in the passenger car market. However, the impact of these systems on the life cycle emissions of vehicles remains unclear. This paper focuses on system function levels from driver assistance to full driving automation and studies their life cycle greenhouse gas emissions. This research establishes a component list for the hardware system and a material inventory. Then, this paper reveals significant differences in total system emissions at these technology levels, 540.1 kg for primary, 1318.7 kg for medium, and 2279.2 kg for advanced systems. Despite this difference, the total is less than 7.23% of the total vehicle emissions. To further reduce this portion of GHG emissions, it is recommended that vehicles favor millimeter-wave radar over solid-state LiDAR in their sensing system hardware, coupled with cameras as the primary sensing element. In addition, Intelligent Hardware Systems are not recommended for internal combustion engine passenger cars for optimal balance between functionality and environmental impact.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su16104090</doi><orcidid>https://orcid.org/0009-0006-1850-0849</orcidid><orcidid>https://orcid.org/0000-0001-7542-4746</orcidid><orcidid>https://orcid.org/0000-0001-6814-8851</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2024-05, Vol.16 (10), p.4090
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_3059690682
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute
subjects Air pollution
Air quality management
Automation
Automobile industry
Automobile sales
Automotive emissions
Autonomous vehicles
Carbon
Combustion
Driverless cars
Economic growth
Electric vehicles
Emission standards
Emissions
Energy consumption
Forecasts and trends
GDP
Global positioning systems
GPS
Greenhouse gases
Gross Domestic Product
Market shares
OEM
Optical radar
Remote sensing
Roads & highways
Technology application
Transportation equipment industry
title A Greenhouse Gas Footprint Analysis of Advanced Hardware Technologies in Connected Autonomous Vehicles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A35%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Greenhouse%20Gas%20Footprint%20Analysis%20of%20Advanced%20Hardware%20Technologies%20in%20Connected%20Autonomous%20Vehicles&rft.jtitle=Sustainability&rft.au=Zhang,%20Haoyi&rft.date=2024-05-01&rft.volume=16&rft.issue=10&rft.spage=4090&rft.pages=4090-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su16104090&rft_dat=%3Cgale_proqu%3EA795445555%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3059690682&rft_id=info:pmid/&rft_galeid=A795445555&rfr_iscdi=true