PDE-Based Bayesian Inference of CEV Dynamics for Credit Risk in Stock Prices
This study proposes a method to infer the parameters of the constant elasticity of variance (CEV) model from the market values of stock after the extension from the asset process of the Merton model in the structural credit risk model to that of the CEV model. The state space model is used, which co...
Gespeichert in:
Veröffentlicht in: | Asia-Pacific financial markets 2024-06, Vol.31 (2), p.389-421 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 421 |
---|---|
container_issue | 2 |
container_start_page | 389 |
container_title | Asia-Pacific financial markets |
container_volume | 31 |
creator | Kato, Kensuke Nakamura, Nobuhiro |
description | This study proposes a method to infer the parameters of the constant elasticity of variance (CEV) model from the market values of stock after the extension from the asset process of the Merton model in the structural credit risk model to that of the CEV model. The state space model is used, which consists of an asset process (system equation) and the call option pricing a stock value (observation equation), for the inference. However, it is usually difficult to apply the Markov chain Monte Carlo (MCMC) method to estimate the parameters of the CEV model because the observation equation of the state space model has no analytical formula. Our method solves this parameter estimation problem by applying the MCMC combined with a finite difference method of partial differential equations, where the stock value obtained as a CEV option price is numerically solved. This study estimates the parameters from the real stock values of the US financial institutions as an empirical analysis. Furthermore, we analyze the default probability and measure the credit risk of bank portfolios. |
doi_str_mv | 10.1007/s10690-023-09420-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3059687987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3059687987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-240f776dffa971f182eed03e4b022dffdc368ee61224d4126e811e47c08ebdf63</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhCMEEqXwBzhZ4mxYP2o7R_oAKlWi4nW1UmeN0tKk2Omh_fW4BKk3TrvanW9Gmiy7ZnDLAPRdZKByoMAFhVxyoPuTrMcGWlCVS3WadmE05UbI8-wixiUkSCrey2bz8YQOi4glGRY7jFVRk2ntMWDtkDSejCYfZLyri3XlIvFNIKOAZdWSlyquSFWT17ZxKzIPlcN4mZ354ivi1d_sZ-8Pk7fRE509P05H9zPqJOQt5RK81qr0vsg188xwxBIEygVwnq6lE8ogKsa5LCXjCg1jKLUDg4vSK9HPbjrfTWi-txhbu2y2oU6RVsAgV0bnRicV71QuNDEG9HYTqnURdpaBPbRmu9Zsas3-tmb3CSIdhK6pq3hETM4EcDCHdNFJYnrWnxiO6f8Y_wAdDHjW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3059687987</pqid></control><display><type>article</type><title>PDE-Based Bayesian Inference of CEV Dynamics for Credit Risk in Stock Prices</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kato, Kensuke ; Nakamura, Nobuhiro</creator><creatorcontrib>Kato, Kensuke ; Nakamura, Nobuhiro</creatorcontrib><description>This study proposes a method to infer the parameters of the constant elasticity of variance (CEV) model from the market values of stock after the extension from the asset process of the Merton model in the structural credit risk model to that of the CEV model. The state space model is used, which consists of an asset process (system equation) and the call option pricing a stock value (observation equation), for the inference. However, it is usually difficult to apply the Markov chain Monte Carlo (MCMC) method to estimate the parameters of the CEV model because the observation equation of the state space model has no analytical formula. Our method solves this parameter estimation problem by applying the MCMC combined with a finite difference method of partial differential equations, where the stock value obtained as a CEV option price is numerically solved. This study estimates the parameters from the real stock values of the US financial institutions as an empirical analysis. Furthermore, we analyze the default probability and measure the credit risk of bank portfolios.</description><identifier>ISSN: 1387-2834</identifier><identifier>EISSN: 1573-6946</identifier><identifier>DOI: 10.1007/s10690-023-09420-z</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Bayesian analysis ; Credit risk ; Econometrics ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics and Finance ; Empirical analysis ; Finance ; Finite difference method ; International Economics ; Macroeconomics/Monetary Economics//Financial Economics ; Market value ; Markov chains ; Original Research ; Parameter estimation ; Partial differential equations ; Risk ; State space models ; Statistical inference</subject><ispartof>Asia-Pacific financial markets, 2024-06, Vol.31 (2), p.389-421</ispartof><rights>The Author(s), under exclusive licence to Springer Japan KK, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-240f776dffa971f182eed03e4b022dffdc368ee61224d4126e811e47c08ebdf63</citedby><cites>FETCH-LOGICAL-c409t-240f776dffa971f182eed03e4b022dffdc368ee61224d4126e811e47c08ebdf63</cites><orcidid>0000-0003-4465-5298</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10690-023-09420-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10690-023-09420-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kato, Kensuke</creatorcontrib><creatorcontrib>Nakamura, Nobuhiro</creatorcontrib><title>PDE-Based Bayesian Inference of CEV Dynamics for Credit Risk in Stock Prices</title><title>Asia-Pacific financial markets</title><addtitle>Asia-Pac Financ Markets</addtitle><description>This study proposes a method to infer the parameters of the constant elasticity of variance (CEV) model from the market values of stock after the extension from the asset process of the Merton model in the structural credit risk model to that of the CEV model. The state space model is used, which consists of an asset process (system equation) and the call option pricing a stock value (observation equation), for the inference. However, it is usually difficult to apply the Markov chain Monte Carlo (MCMC) method to estimate the parameters of the CEV model because the observation equation of the state space model has no analytical formula. Our method solves this parameter estimation problem by applying the MCMC combined with a finite difference method of partial differential equations, where the stock value obtained as a CEV option price is numerically solved. This study estimates the parameters from the real stock values of the US financial institutions as an empirical analysis. Furthermore, we analyze the default probability and measure the credit risk of bank portfolios.</description><subject>Bayesian analysis</subject><subject>Credit risk</subject><subject>Econometrics</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics and Finance</subject><subject>Empirical analysis</subject><subject>Finance</subject><subject>Finite difference method</subject><subject>International Economics</subject><subject>Macroeconomics/Monetary Economics//Financial Economics</subject><subject>Market value</subject><subject>Markov chains</subject><subject>Original Research</subject><subject>Parameter estimation</subject><subject>Partial differential equations</subject><subject>Risk</subject><subject>State space models</subject><subject>Statistical inference</subject><issn>1387-2834</issn><issn>1573-6946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhCMEEqXwBzhZ4mxYP2o7R_oAKlWi4nW1UmeN0tKk2Omh_fW4BKk3TrvanW9Gmiy7ZnDLAPRdZKByoMAFhVxyoPuTrMcGWlCVS3WadmE05UbI8-wixiUkSCrey2bz8YQOi4glGRY7jFVRk2ntMWDtkDSejCYfZLyri3XlIvFNIKOAZdWSlyquSFWT17ZxKzIPlcN4mZ354ivi1d_sZ-8Pk7fRE509P05H9zPqJOQt5RK81qr0vsg188xwxBIEygVwnq6lE8ogKsa5LCXjCg1jKLUDg4vSK9HPbjrfTWi-txhbu2y2oU6RVsAgV0bnRicV71QuNDEG9HYTqnURdpaBPbRmu9Zsas3-tmb3CSIdhK6pq3hETM4EcDCHdNFJYnrWnxiO6f8Y_wAdDHjW</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Kato, Kensuke</creator><creator>Nakamura, Nobuhiro</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0003-4465-5298</orcidid></search><sort><creationdate>20240601</creationdate><title>PDE-Based Bayesian Inference of CEV Dynamics for Credit Risk in Stock Prices</title><author>Kato, Kensuke ; Nakamura, Nobuhiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-240f776dffa971f182eed03e4b022dffdc368ee61224d4126e811e47c08ebdf63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bayesian analysis</topic><topic>Credit risk</topic><topic>Econometrics</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics and Finance</topic><topic>Empirical analysis</topic><topic>Finance</topic><topic>Finite difference method</topic><topic>International Economics</topic><topic>Macroeconomics/Monetary Economics//Financial Economics</topic><topic>Market value</topic><topic>Markov chains</topic><topic>Original Research</topic><topic>Parameter estimation</topic><topic>Partial differential equations</topic><topic>Risk</topic><topic>State space models</topic><topic>Statistical inference</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kato, Kensuke</creatorcontrib><creatorcontrib>Nakamura, Nobuhiro</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Asia-Pacific financial markets</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kato, Kensuke</au><au>Nakamura, Nobuhiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PDE-Based Bayesian Inference of CEV Dynamics for Credit Risk in Stock Prices</atitle><jtitle>Asia-Pacific financial markets</jtitle><stitle>Asia-Pac Financ Markets</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>31</volume><issue>2</issue><spage>389</spage><epage>421</epage><pages>389-421</pages><issn>1387-2834</issn><eissn>1573-6946</eissn><abstract>This study proposes a method to infer the parameters of the constant elasticity of variance (CEV) model from the market values of stock after the extension from the asset process of the Merton model in the structural credit risk model to that of the CEV model. The state space model is used, which consists of an asset process (system equation) and the call option pricing a stock value (observation equation), for the inference. However, it is usually difficult to apply the Markov chain Monte Carlo (MCMC) method to estimate the parameters of the CEV model because the observation equation of the state space model has no analytical formula. Our method solves this parameter estimation problem by applying the MCMC combined with a finite difference method of partial differential equations, where the stock value obtained as a CEV option price is numerically solved. This study estimates the parameters from the real stock values of the US financial institutions as an empirical analysis. Furthermore, we analyze the default probability and measure the credit risk of bank portfolios.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s10690-023-09420-z</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0003-4465-5298</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1387-2834 |
ispartof | Asia-Pacific financial markets, 2024-06, Vol.31 (2), p.389-421 |
issn | 1387-2834 1573-6946 |
language | eng |
recordid | cdi_proquest_journals_3059687987 |
source | SpringerLink Journals - AutoHoldings |
subjects | Bayesian analysis Credit risk Econometrics Economic Theory/Quantitative Economics/Mathematical Methods Economics and Finance Empirical analysis Finance Finite difference method International Economics Macroeconomics/Monetary Economics//Financial Economics Market value Markov chains Original Research Parameter estimation Partial differential equations Risk State space models Statistical inference |
title | PDE-Based Bayesian Inference of CEV Dynamics for Credit Risk in Stock Prices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T19%3A31%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PDE-Based%20Bayesian%20Inference%20of%20CEV%20Dynamics%20for%20Credit%20Risk%20in%20Stock%20Prices&rft.jtitle=Asia-Pacific%20financial%20markets&rft.au=Kato,%20Kensuke&rft.date=2024-06-01&rft.volume=31&rft.issue=2&rft.spage=389&rft.epage=421&rft.pages=389-421&rft.issn=1387-2834&rft.eissn=1573-6946&rft_id=info:doi/10.1007/s10690-023-09420-z&rft_dat=%3Cproquest_cross%3E3059687987%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3059687987&rft_id=info:pmid/&rfr_iscdi=true |