Enhanced Spatiotemporal Prediction Using Physical-guided And Frequency-enhanced Recurrent Neural Networks

Spatiotemporal prediction plays an important role in solving natural problems and processing video frames, especially in weather forecasting and human action recognition. Recent advances attempt to incorporate prior physical knowledge into the deep learning framework to estimate the unknown governin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-05
Hauptverfasser: Zhao, Xuanle, Sun, Yue, Zhang, Tielin, Xu, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Zhao, Xuanle
Sun, Yue
Zhang, Tielin
Xu, Bo
description Spatiotemporal prediction plays an important role in solving natural problems and processing video frames, especially in weather forecasting and human action recognition. Recent advances attempt to incorporate prior physical knowledge into the deep learning framework to estimate the unknown governing partial differential equations (PDEs), which have shown promising results in spatiotemporal prediction tasks. However, previous approaches only restrict neural network architectures or loss functions to acquire physical or PDE features, which decreases the representative capacity of a neural network. Meanwhile, the updating process of the physical state cannot be effectively estimated. To solve the above mentioned problems, this paper proposes a physical-guided neural network, which utilizes the frequency-enhanced Fourier module and moment loss to strengthen the model's ability to estimate the spatiotemporal dynamics. Furthermore, we propose an adaptive second-order Runge-Kutta method with physical constraints to model the physical states more precisely. We evaluate our model on both spatiotemporal and video prediction tasks. The experimental results show that our model outperforms state-of-the-art methods and performs best in several datasets, with a much smaller parameter count.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3059654867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3059654867</sourcerecordid><originalsourceid>FETCH-proquest_journals_30596548673</originalsourceid><addsrcrecordid>eNqNjMsKgkAYRocgSMp3GGgt2Iy3lhFKK4kuaxnGPx2zGZsL4dtnUPtWH5zvcGbII5RugiwiZIF8Y7owDEmSkjimHhK5bJnkUOPzwKxQFh6D0qzHRw214BOR-GqEbPCxHY3grA8aJ-rJ38kaFxqeDiQfA_hlTsCd1iAtLsF9QiXYl9J3s0LzG-sN-N9donWRX_aHYNBqihhbdcppOV0VDeNtEkdZktL_rDcHUEj7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3059654867</pqid></control><display><type>article</type><title>Enhanced Spatiotemporal Prediction Using Physical-guided And Frequency-enhanced Recurrent Neural Networks</title><source>Free E- Journals</source><creator>Zhao, Xuanle ; Sun, Yue ; Zhang, Tielin ; Xu, Bo</creator><creatorcontrib>Zhao, Xuanle ; Sun, Yue ; Zhang, Tielin ; Xu, Bo</creatorcontrib><description>Spatiotemporal prediction plays an important role in solving natural problems and processing video frames, especially in weather forecasting and human action recognition. Recent advances attempt to incorporate prior physical knowledge into the deep learning framework to estimate the unknown governing partial differential equations (PDEs), which have shown promising results in spatiotemporal prediction tasks. However, previous approaches only restrict neural network architectures or loss functions to acquire physical or PDE features, which decreases the representative capacity of a neural network. Meanwhile, the updating process of the physical state cannot be effectively estimated. To solve the above mentioned problems, this paper proposes a physical-guided neural network, which utilizes the frequency-enhanced Fourier module and moment loss to strengthen the model's ability to estimate the spatiotemporal dynamics. Furthermore, we propose an adaptive second-order Runge-Kutta method with physical constraints to model the physical states more precisely. We evaluate our model on both spatiotemporal and video prediction tasks. The experimental results show that our model outperforms state-of-the-art methods and performs best in several datasets, with a much smaller parameter count.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Human activity recognition ; Machine learning ; Neural networks ; Partial differential equations ; Recurrent neural networks ; Runge-Kutta method ; Weather forecasting</subject><ispartof>arXiv.org, 2024-05</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Zhao, Xuanle</creatorcontrib><creatorcontrib>Sun, Yue</creatorcontrib><creatorcontrib>Zhang, Tielin</creatorcontrib><creatorcontrib>Xu, Bo</creatorcontrib><title>Enhanced Spatiotemporal Prediction Using Physical-guided And Frequency-enhanced Recurrent Neural Networks</title><title>arXiv.org</title><description>Spatiotemporal prediction plays an important role in solving natural problems and processing video frames, especially in weather forecasting and human action recognition. Recent advances attempt to incorporate prior physical knowledge into the deep learning framework to estimate the unknown governing partial differential equations (PDEs), which have shown promising results in spatiotemporal prediction tasks. However, previous approaches only restrict neural network architectures or loss functions to acquire physical or PDE features, which decreases the representative capacity of a neural network. Meanwhile, the updating process of the physical state cannot be effectively estimated. To solve the above mentioned problems, this paper proposes a physical-guided neural network, which utilizes the frequency-enhanced Fourier module and moment loss to strengthen the model's ability to estimate the spatiotemporal dynamics. Furthermore, we propose an adaptive second-order Runge-Kutta method with physical constraints to model the physical states more precisely. We evaluate our model on both spatiotemporal and video prediction tasks. The experimental results show that our model outperforms state-of-the-art methods and performs best in several datasets, with a much smaller parameter count.</description><subject>Human activity recognition</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Partial differential equations</subject><subject>Recurrent neural networks</subject><subject>Runge-Kutta method</subject><subject>Weather forecasting</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjMsKgkAYRocgSMp3GGgt2Iy3lhFKK4kuaxnGPx2zGZsL4dtnUPtWH5zvcGbII5RugiwiZIF8Y7owDEmSkjimHhK5bJnkUOPzwKxQFh6D0qzHRw214BOR-GqEbPCxHY3grA8aJ-rJ38kaFxqeDiQfA_hlTsCd1iAtLsF9QiXYl9J3s0LzG-sN-N9donWRX_aHYNBqihhbdcppOV0VDeNtEkdZktL_rDcHUEj7</recordid><startdate>20240523</startdate><enddate>20240523</enddate><creator>Zhao, Xuanle</creator><creator>Sun, Yue</creator><creator>Zhang, Tielin</creator><creator>Xu, Bo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240523</creationdate><title>Enhanced Spatiotemporal Prediction Using Physical-guided And Frequency-enhanced Recurrent Neural Networks</title><author>Zhao, Xuanle ; Sun, Yue ; Zhang, Tielin ; Xu, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30596548673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Human activity recognition</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Partial differential equations</topic><topic>Recurrent neural networks</topic><topic>Runge-Kutta method</topic><topic>Weather forecasting</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Xuanle</creatorcontrib><creatorcontrib>Sun, Yue</creatorcontrib><creatorcontrib>Zhang, Tielin</creatorcontrib><creatorcontrib>Xu, Bo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Xuanle</au><au>Sun, Yue</au><au>Zhang, Tielin</au><au>Xu, Bo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Enhanced Spatiotemporal Prediction Using Physical-guided And Frequency-enhanced Recurrent Neural Networks</atitle><jtitle>arXiv.org</jtitle><date>2024-05-23</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Spatiotemporal prediction plays an important role in solving natural problems and processing video frames, especially in weather forecasting and human action recognition. Recent advances attempt to incorporate prior physical knowledge into the deep learning framework to estimate the unknown governing partial differential equations (PDEs), which have shown promising results in spatiotemporal prediction tasks. However, previous approaches only restrict neural network architectures or loss functions to acquire physical or PDE features, which decreases the representative capacity of a neural network. Meanwhile, the updating process of the physical state cannot be effectively estimated. To solve the above mentioned problems, this paper proposes a physical-guided neural network, which utilizes the frequency-enhanced Fourier module and moment loss to strengthen the model's ability to estimate the spatiotemporal dynamics. Furthermore, we propose an adaptive second-order Runge-Kutta method with physical constraints to model the physical states more precisely. We evaluate our model on both spatiotemporal and video prediction tasks. The experimental results show that our model outperforms state-of-the-art methods and performs best in several datasets, with a much smaller parameter count.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_3059654867
source Free E- Journals
subjects Human activity recognition
Machine learning
Neural networks
Partial differential equations
Recurrent neural networks
Runge-Kutta method
Weather forecasting
title Enhanced Spatiotemporal Prediction Using Physical-guided And Frequency-enhanced Recurrent Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A45%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Enhanced%20Spatiotemporal%20Prediction%20Using%20Physical-guided%20And%20Frequency-enhanced%20Recurrent%20Neural%20Networks&rft.jtitle=arXiv.org&rft.au=Zhao,%20Xuanle&rft.date=2024-05-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3059654867%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3059654867&rft_id=info:pmid/&rfr_iscdi=true