A K-means Algorithm for Financial Market Risk Forecasting

Financial market risk forecasting involves applying mathematical models, historical data analysis and statistical methods to estimate the impact of future market movements on investments. This process is crucial for investors to develop strategies, financial institutions to manage assets and regulat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-05
Hauptverfasser: Xu, Jinxin, Xu, Kaixian, Wang, Yue, Shen, Qinyan, Li, Ruisi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Xu, Jinxin
Xu, Kaixian
Wang, Yue
Shen, Qinyan
Li, Ruisi
description Financial market risk forecasting involves applying mathematical models, historical data analysis and statistical methods to estimate the impact of future market movements on investments. This process is crucial for investors to develop strategies, financial institutions to manage assets and regulators to formulate policy. In today's society, there are problems of high error rate and low precision in financial market risk prediction, which greatly affect the accuracy of financial market risk prediction. K-means algorithm in machine learning is an effective risk prediction technique for financial market. This study uses K-means algorithm to develop a financial market risk prediction system, which significantly improves the accuracy and efficiency of financial market risk prediction. Ultimately, the outcomes of the experiments confirm that the K-means algorithm operates with user-friendly simplicity and achieves a 94.61% accuracy rate
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3059646938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3059646938</sourcerecordid><originalsourceid>FETCH-proquest_journals_30596469383</originalsourceid><addsrcrecordid>eNqNykELgjAYgOERBEn5Hz7oLKx9anqUaATRJbrLkGnTudW--f_r0A_o9B6ed8USgXjIqlyIDUuJRs65KI-iKDBhdQPXbNbKETR28MHE5wy9DyCNU64zysJNhUlHuBuaQPqgO0XRuGHH1r2ypNNft2wvz4_TJXsF_140xXb0S3BfapEXdZmXNVb43_UBD-c1ug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3059646938</pqid></control><display><type>article</type><title>A K-means Algorithm for Financial Market Risk Forecasting</title><source>Free E- Journals</source><creator>Xu, Jinxin ; Xu, Kaixian ; Wang, Yue ; Shen, Qinyan ; Li, Ruisi</creator><creatorcontrib>Xu, Jinxin ; Xu, Kaixian ; Wang, Yue ; Shen, Qinyan ; Li, Ruisi</creatorcontrib><description>Financial market risk forecasting involves applying mathematical models, historical data analysis and statistical methods to estimate the impact of future market movements on investments. This process is crucial for investors to develop strategies, financial institutions to manage assets and regulators to formulate policy. In today's society, there are problems of high error rate and low precision in financial market risk prediction, which greatly affect the accuracy of financial market risk prediction. K-means algorithm in machine learning is an effective risk prediction technique for financial market. This study uses K-means algorithm to develop a financial market risk prediction system, which significantly improves the accuracy and efficiency of financial market risk prediction. Ultimately, the outcomes of the experiments confirm that the K-means algorithm operates with user-friendly simplicity and achieves a 94.61% accuracy rate</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Accuracy ; Algorithms ; Data analysis ; Forecasting ; Machine learning ; Risk ; Statistical methods</subject><ispartof>arXiv.org, 2024-05</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Xu, Jinxin</creatorcontrib><creatorcontrib>Xu, Kaixian</creatorcontrib><creatorcontrib>Wang, Yue</creatorcontrib><creatorcontrib>Shen, Qinyan</creatorcontrib><creatorcontrib>Li, Ruisi</creatorcontrib><title>A K-means Algorithm for Financial Market Risk Forecasting</title><title>arXiv.org</title><description>Financial market risk forecasting involves applying mathematical models, historical data analysis and statistical methods to estimate the impact of future market movements on investments. This process is crucial for investors to develop strategies, financial institutions to manage assets and regulators to formulate policy. In today's society, there are problems of high error rate and low precision in financial market risk prediction, which greatly affect the accuracy of financial market risk prediction. K-means algorithm in machine learning is an effective risk prediction technique for financial market. This study uses K-means algorithm to develop a financial market risk prediction system, which significantly improves the accuracy and efficiency of financial market risk prediction. Ultimately, the outcomes of the experiments confirm that the K-means algorithm operates with user-friendly simplicity and achieves a 94.61% accuracy rate</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Data analysis</subject><subject>Forecasting</subject><subject>Machine learning</subject><subject>Risk</subject><subject>Statistical methods</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNykELgjAYgOERBEn5Hz7oLKx9anqUaATRJbrLkGnTudW--f_r0A_o9B6ed8USgXjIqlyIDUuJRs65KI-iKDBhdQPXbNbKETR28MHE5wy9DyCNU64zysJNhUlHuBuaQPqgO0XRuGHH1r2ypNNft2wvz4_TJXsF_140xXb0S3BfapEXdZmXNVb43_UBD-c1ug</recordid><startdate>20240521</startdate><enddate>20240521</enddate><creator>Xu, Jinxin</creator><creator>Xu, Kaixian</creator><creator>Wang, Yue</creator><creator>Shen, Qinyan</creator><creator>Li, Ruisi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240521</creationdate><title>A K-means Algorithm for Financial Market Risk Forecasting</title><author>Xu, Jinxin ; Xu, Kaixian ; Wang, Yue ; Shen, Qinyan ; Li, Ruisi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30596469383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Data analysis</topic><topic>Forecasting</topic><topic>Machine learning</topic><topic>Risk</topic><topic>Statistical methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Xu, Jinxin</creatorcontrib><creatorcontrib>Xu, Kaixian</creatorcontrib><creatorcontrib>Wang, Yue</creatorcontrib><creatorcontrib>Shen, Qinyan</creatorcontrib><creatorcontrib>Li, Ruisi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Jinxin</au><au>Xu, Kaixian</au><au>Wang, Yue</au><au>Shen, Qinyan</au><au>Li, Ruisi</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A K-means Algorithm for Financial Market Risk Forecasting</atitle><jtitle>arXiv.org</jtitle><date>2024-05-21</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Financial market risk forecasting involves applying mathematical models, historical data analysis and statistical methods to estimate the impact of future market movements on investments. This process is crucial for investors to develop strategies, financial institutions to manage assets and regulators to formulate policy. In today's society, there are problems of high error rate and low precision in financial market risk prediction, which greatly affect the accuracy of financial market risk prediction. K-means algorithm in machine learning is an effective risk prediction technique for financial market. This study uses K-means algorithm to develop a financial market risk prediction system, which significantly improves the accuracy and efficiency of financial market risk prediction. Ultimately, the outcomes of the experiments confirm that the K-means algorithm operates with user-friendly simplicity and achieves a 94.61% accuracy rate</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_3059646938
source Free E- Journals
subjects Accuracy
Algorithms
Data analysis
Forecasting
Machine learning
Risk
Statistical methods
title A K-means Algorithm for Financial Market Risk Forecasting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T00%3A15%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20K-means%20Algorithm%20for%20Financial%20Market%20Risk%20Forecasting&rft.jtitle=arXiv.org&rft.au=Xu,%20Jinxin&rft.date=2024-05-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3059646938%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3059646938&rft_id=info:pmid/&rfr_iscdi=true