A K-means Algorithm for Financial Market Risk Forecasting
Financial market risk forecasting involves applying mathematical models, historical data analysis and statistical methods to estimate the impact of future market movements on investments. This process is crucial for investors to develop strategies, financial institutions to manage assets and regulat...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-05 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Xu, Jinxin Xu, Kaixian Wang, Yue Shen, Qinyan Li, Ruisi |
description | Financial market risk forecasting involves applying mathematical models, historical data analysis and statistical methods to estimate the impact of future market movements on investments. This process is crucial for investors to develop strategies, financial institutions to manage assets and regulators to formulate policy. In today's society, there are problems of high error rate and low precision in financial market risk prediction, which greatly affect the accuracy of financial market risk prediction. K-means algorithm in machine learning is an effective risk prediction technique for financial market. This study uses K-means algorithm to develop a financial market risk prediction system, which significantly improves the accuracy and efficiency of financial market risk prediction. Ultimately, the outcomes of the experiments confirm that the K-means algorithm operates with user-friendly simplicity and achieves a 94.61% accuracy rate |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3059646938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3059646938</sourcerecordid><originalsourceid>FETCH-proquest_journals_30596469383</originalsourceid><addsrcrecordid>eNqNykELgjAYgOERBEn5Hz7oLKx9anqUaATRJbrLkGnTudW--f_r0A_o9B6ed8USgXjIqlyIDUuJRs65KI-iKDBhdQPXbNbKETR28MHE5wy9DyCNU64zysJNhUlHuBuaQPqgO0XRuGHH1r2ypNNft2wvz4_TJXsF_140xXb0S3BfapEXdZmXNVb43_UBD-c1ug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3059646938</pqid></control><display><type>article</type><title>A K-means Algorithm for Financial Market Risk Forecasting</title><source>Free E- Journals</source><creator>Xu, Jinxin ; Xu, Kaixian ; Wang, Yue ; Shen, Qinyan ; Li, Ruisi</creator><creatorcontrib>Xu, Jinxin ; Xu, Kaixian ; Wang, Yue ; Shen, Qinyan ; Li, Ruisi</creatorcontrib><description>Financial market risk forecasting involves applying mathematical models, historical data analysis and statistical methods to estimate the impact of future market movements on investments. This process is crucial for investors to develop strategies, financial institutions to manage assets and regulators to formulate policy. In today's society, there are problems of high error rate and low precision in financial market risk prediction, which greatly affect the accuracy of financial market risk prediction. K-means algorithm in machine learning is an effective risk prediction technique for financial market. This study uses K-means algorithm to develop a financial market risk prediction system, which significantly improves the accuracy and efficiency of financial market risk prediction. Ultimately, the outcomes of the experiments confirm that the K-means algorithm operates with user-friendly simplicity and achieves a 94.61% accuracy rate</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Accuracy ; Algorithms ; Data analysis ; Forecasting ; Machine learning ; Risk ; Statistical methods</subject><ispartof>arXiv.org, 2024-05</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Xu, Jinxin</creatorcontrib><creatorcontrib>Xu, Kaixian</creatorcontrib><creatorcontrib>Wang, Yue</creatorcontrib><creatorcontrib>Shen, Qinyan</creatorcontrib><creatorcontrib>Li, Ruisi</creatorcontrib><title>A K-means Algorithm for Financial Market Risk Forecasting</title><title>arXiv.org</title><description>Financial market risk forecasting involves applying mathematical models, historical data analysis and statistical methods to estimate the impact of future market movements on investments. This process is crucial for investors to develop strategies, financial institutions to manage assets and regulators to formulate policy. In today's society, there are problems of high error rate and low precision in financial market risk prediction, which greatly affect the accuracy of financial market risk prediction. K-means algorithm in machine learning is an effective risk prediction technique for financial market. This study uses K-means algorithm to develop a financial market risk prediction system, which significantly improves the accuracy and efficiency of financial market risk prediction. Ultimately, the outcomes of the experiments confirm that the K-means algorithm operates with user-friendly simplicity and achieves a 94.61% accuracy rate</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Data analysis</subject><subject>Forecasting</subject><subject>Machine learning</subject><subject>Risk</subject><subject>Statistical methods</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNykELgjAYgOERBEn5Hz7oLKx9anqUaATRJbrLkGnTudW--f_r0A_o9B6ed8USgXjIqlyIDUuJRs65KI-iKDBhdQPXbNbKETR28MHE5wy9DyCNU64zysJNhUlHuBuaQPqgO0XRuGHH1r2ypNNft2wvz4_TJXsF_140xXb0S3BfapEXdZmXNVb43_UBD-c1ug</recordid><startdate>20240521</startdate><enddate>20240521</enddate><creator>Xu, Jinxin</creator><creator>Xu, Kaixian</creator><creator>Wang, Yue</creator><creator>Shen, Qinyan</creator><creator>Li, Ruisi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240521</creationdate><title>A K-means Algorithm for Financial Market Risk Forecasting</title><author>Xu, Jinxin ; Xu, Kaixian ; Wang, Yue ; Shen, Qinyan ; Li, Ruisi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30596469383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Data analysis</topic><topic>Forecasting</topic><topic>Machine learning</topic><topic>Risk</topic><topic>Statistical methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Xu, Jinxin</creatorcontrib><creatorcontrib>Xu, Kaixian</creatorcontrib><creatorcontrib>Wang, Yue</creatorcontrib><creatorcontrib>Shen, Qinyan</creatorcontrib><creatorcontrib>Li, Ruisi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Jinxin</au><au>Xu, Kaixian</au><au>Wang, Yue</au><au>Shen, Qinyan</au><au>Li, Ruisi</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A K-means Algorithm for Financial Market Risk Forecasting</atitle><jtitle>arXiv.org</jtitle><date>2024-05-21</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Financial market risk forecasting involves applying mathematical models, historical data analysis and statistical methods to estimate the impact of future market movements on investments. This process is crucial for investors to develop strategies, financial institutions to manage assets and regulators to formulate policy. In today's society, there are problems of high error rate and low precision in financial market risk prediction, which greatly affect the accuracy of financial market risk prediction. K-means algorithm in machine learning is an effective risk prediction technique for financial market. This study uses K-means algorithm to develop a financial market risk prediction system, which significantly improves the accuracy and efficiency of financial market risk prediction. Ultimately, the outcomes of the experiments confirm that the K-means algorithm operates with user-friendly simplicity and achieves a 94.61% accuracy rate</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3059646938 |
source | Free E- Journals |
subjects | Accuracy Algorithms Data analysis Forecasting Machine learning Risk Statistical methods |
title | A K-means Algorithm for Financial Market Risk Forecasting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T00%3A15%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20K-means%20Algorithm%20for%20Financial%20Market%20Risk%20Forecasting&rft.jtitle=arXiv.org&rft.au=Xu,%20Jinxin&rft.date=2024-05-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3059646938%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3059646938&rft_id=info:pmid/&rfr_iscdi=true |