Verifying Global Two-Safety Properties in Neural Networks with Confidence

We present the first automated verification technique for confidence-based 2-safety properties, such as global robustness and global fairness, in deep neural networks (DNNs). Our approach combines self-composition to leverage existing reachability analysis techniques and a novel abstraction of the s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-06
Hauptverfasser: Athavale, Anagha, Bartocci, Ezio, Christakis, Maria, Maffei, Matteo, Nickovic, Dejan, Weissenbacher, Georg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Athavale, Anagha
Bartocci, Ezio
Christakis, Maria
Maffei, Matteo
Nickovic, Dejan
Weissenbacher, Georg
description We present the first automated verification technique for confidence-based 2-safety properties, such as global robustness and global fairness, in deep neural networks (DNNs). Our approach combines self-composition to leverage existing reachability analysis techniques and a novel abstraction of the softmax function, which is amenable to automated verification. We characterize and prove the soundness of our static analysis technique. Furthermore, we implement it on top of Marabou, a safety analysis tool for neural networks, conducting a performance evaluation on several publicly available benchmarks for DNN verification.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3059634506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3059634506</sourcerecordid><originalsourceid>FETCH-proquest_journals_30596345063</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtOwScCzFpqs7Fv6UIFtcS9UZTS25NUkrf3g4-gNMZvjMhERdilWxSzmck9r5mjPFszaUUETldwRk9GPukhwZvqqFlj8lFaQgDPTtswQUDnhpLC-jc6AWEHt3b096EF83RavMAe4cFmWrVeIh_nZPlflfmx6R1-OnAh6rGztmRKsHkNhOpZJn47_oChiM8aQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3059634506</pqid></control><display><type>article</type><title>Verifying Global Two-Safety Properties in Neural Networks with Confidence</title><source>Free E- Journals</source><creator>Athavale, Anagha ; Bartocci, Ezio ; Christakis, Maria ; Maffei, Matteo ; Nickovic, Dejan ; Weissenbacher, Georg</creator><creatorcontrib>Athavale, Anagha ; Bartocci, Ezio ; Christakis, Maria ; Maffei, Matteo ; Nickovic, Dejan ; Weissenbacher, Georg</creatorcontrib><description>We present the first automated verification technique for confidence-based 2-safety properties, such as global robustness and global fairness, in deep neural networks (DNNs). Our approach combines self-composition to leverage existing reachability analysis techniques and a novel abstraction of the softmax function, which is amenable to automated verification. We characterize and prove the soundness of our static analysis technique. Furthermore, we implement it on top of Marabou, a safety analysis tool for neural networks, conducting a performance evaluation on several publicly available benchmarks for DNN verification.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Performance evaluation ; Verification</subject><ispartof>arXiv.org, 2024-06</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Athavale, Anagha</creatorcontrib><creatorcontrib>Bartocci, Ezio</creatorcontrib><creatorcontrib>Christakis, Maria</creatorcontrib><creatorcontrib>Maffei, Matteo</creatorcontrib><creatorcontrib>Nickovic, Dejan</creatorcontrib><creatorcontrib>Weissenbacher, Georg</creatorcontrib><title>Verifying Global Two-Safety Properties in Neural Networks with Confidence</title><title>arXiv.org</title><description>We present the first automated verification technique for confidence-based 2-safety properties, such as global robustness and global fairness, in deep neural networks (DNNs). Our approach combines self-composition to leverage existing reachability analysis techniques and a novel abstraction of the softmax function, which is amenable to automated verification. We characterize and prove the soundness of our static analysis technique. Furthermore, we implement it on top of Marabou, a safety analysis tool for neural networks, conducting a performance evaluation on several publicly available benchmarks for DNN verification.</description><subject>Artificial neural networks</subject><subject>Performance evaluation</subject><subject>Verification</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtOwScCzFpqs7Fv6UIFtcS9UZTS25NUkrf3g4-gNMZvjMhERdilWxSzmck9r5mjPFszaUUETldwRk9GPukhwZvqqFlj8lFaQgDPTtswQUDnhpLC-jc6AWEHt3b096EF83RavMAe4cFmWrVeIh_nZPlflfmx6R1-OnAh6rGztmRKsHkNhOpZJn47_oChiM8aQ</recordid><startdate>20240617</startdate><enddate>20240617</enddate><creator>Athavale, Anagha</creator><creator>Bartocci, Ezio</creator><creator>Christakis, Maria</creator><creator>Maffei, Matteo</creator><creator>Nickovic, Dejan</creator><creator>Weissenbacher, Georg</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240617</creationdate><title>Verifying Global Two-Safety Properties in Neural Networks with Confidence</title><author>Athavale, Anagha ; Bartocci, Ezio ; Christakis, Maria ; Maffei, Matteo ; Nickovic, Dejan ; Weissenbacher, Georg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30596345063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Performance evaluation</topic><topic>Verification</topic><toplevel>online_resources</toplevel><creatorcontrib>Athavale, Anagha</creatorcontrib><creatorcontrib>Bartocci, Ezio</creatorcontrib><creatorcontrib>Christakis, Maria</creatorcontrib><creatorcontrib>Maffei, Matteo</creatorcontrib><creatorcontrib>Nickovic, Dejan</creatorcontrib><creatorcontrib>Weissenbacher, Georg</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Athavale, Anagha</au><au>Bartocci, Ezio</au><au>Christakis, Maria</au><au>Maffei, Matteo</au><au>Nickovic, Dejan</au><au>Weissenbacher, Georg</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Verifying Global Two-Safety Properties in Neural Networks with Confidence</atitle><jtitle>arXiv.org</jtitle><date>2024-06-17</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We present the first automated verification technique for confidence-based 2-safety properties, such as global robustness and global fairness, in deep neural networks (DNNs). Our approach combines self-composition to leverage existing reachability analysis techniques and a novel abstraction of the softmax function, which is amenable to automated verification. We characterize and prove the soundness of our static analysis technique. Furthermore, we implement it on top of Marabou, a safety analysis tool for neural networks, conducting a performance evaluation on several publicly available benchmarks for DNN verification.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_3059634506
source Free E- Journals
subjects Artificial neural networks
Performance evaluation
Verification
title Verifying Global Two-Safety Properties in Neural Networks with Confidence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A05%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Verifying%20Global%20Two-Safety%20Properties%20in%20Neural%20Networks%20with%20Confidence&rft.jtitle=arXiv.org&rft.au=Athavale,%20Anagha&rft.date=2024-06-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3059634506%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3059634506&rft_id=info:pmid/&rfr_iscdi=true