Verifying Global Two-Safety Properties in Neural Networks with Confidence
We present the first automated verification technique for confidence-based 2-safety properties, such as global robustness and global fairness, in deep neural networks (DNNs). Our approach combines self-composition to leverage existing reachability analysis techniques and a novel abstraction of the s...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-06 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Athavale, Anagha Bartocci, Ezio Christakis, Maria Maffei, Matteo Nickovic, Dejan Weissenbacher, Georg |
description | We present the first automated verification technique for confidence-based 2-safety properties, such as global robustness and global fairness, in deep neural networks (DNNs). Our approach combines self-composition to leverage existing reachability analysis techniques and a novel abstraction of the softmax function, which is amenable to automated verification. We characterize and prove the soundness of our static analysis technique. Furthermore, we implement it on top of Marabou, a safety analysis tool for neural networks, conducting a performance evaluation on several publicly available benchmarks for DNN verification. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3059634506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3059634506</sourcerecordid><originalsourceid>FETCH-proquest_journals_30596345063</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtOwScCzFpqs7Fv6UIFtcS9UZTS25NUkrf3g4-gNMZvjMhERdilWxSzmck9r5mjPFszaUUETldwRk9GPukhwZvqqFlj8lFaQgDPTtswQUDnhpLC-jc6AWEHt3b096EF83RavMAe4cFmWrVeIh_nZPlflfmx6R1-OnAh6rGztmRKsHkNhOpZJn47_oChiM8aQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3059634506</pqid></control><display><type>article</type><title>Verifying Global Two-Safety Properties in Neural Networks with Confidence</title><source>Free E- Journals</source><creator>Athavale, Anagha ; Bartocci, Ezio ; Christakis, Maria ; Maffei, Matteo ; Nickovic, Dejan ; Weissenbacher, Georg</creator><creatorcontrib>Athavale, Anagha ; Bartocci, Ezio ; Christakis, Maria ; Maffei, Matteo ; Nickovic, Dejan ; Weissenbacher, Georg</creatorcontrib><description>We present the first automated verification technique for confidence-based 2-safety properties, such as global robustness and global fairness, in deep neural networks (DNNs). Our approach combines self-composition to leverage existing reachability analysis techniques and a novel abstraction of the softmax function, which is amenable to automated verification. We characterize and prove the soundness of our static analysis technique. Furthermore, we implement it on top of Marabou, a safety analysis tool for neural networks, conducting a performance evaluation on several publicly available benchmarks for DNN verification.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Performance evaluation ; Verification</subject><ispartof>arXiv.org, 2024-06</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Athavale, Anagha</creatorcontrib><creatorcontrib>Bartocci, Ezio</creatorcontrib><creatorcontrib>Christakis, Maria</creatorcontrib><creatorcontrib>Maffei, Matteo</creatorcontrib><creatorcontrib>Nickovic, Dejan</creatorcontrib><creatorcontrib>Weissenbacher, Georg</creatorcontrib><title>Verifying Global Two-Safety Properties in Neural Networks with Confidence</title><title>arXiv.org</title><description>We present the first automated verification technique for confidence-based 2-safety properties, such as global robustness and global fairness, in deep neural networks (DNNs). Our approach combines self-composition to leverage existing reachability analysis techniques and a novel abstraction of the softmax function, which is amenable to automated verification. We characterize and prove the soundness of our static analysis technique. Furthermore, we implement it on top of Marabou, a safety analysis tool for neural networks, conducting a performance evaluation on several publicly available benchmarks for DNN verification.</description><subject>Artificial neural networks</subject><subject>Performance evaluation</subject><subject>Verification</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtOwScCzFpqs7Fv6UIFtcS9UZTS25NUkrf3g4-gNMZvjMhERdilWxSzmck9r5mjPFszaUUETldwRk9GPukhwZvqqFlj8lFaQgDPTtswQUDnhpLC-jc6AWEHt3b096EF83RavMAe4cFmWrVeIh_nZPlflfmx6R1-OnAh6rGztmRKsHkNhOpZJn47_oChiM8aQ</recordid><startdate>20240617</startdate><enddate>20240617</enddate><creator>Athavale, Anagha</creator><creator>Bartocci, Ezio</creator><creator>Christakis, Maria</creator><creator>Maffei, Matteo</creator><creator>Nickovic, Dejan</creator><creator>Weissenbacher, Georg</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240617</creationdate><title>Verifying Global Two-Safety Properties in Neural Networks with Confidence</title><author>Athavale, Anagha ; Bartocci, Ezio ; Christakis, Maria ; Maffei, Matteo ; Nickovic, Dejan ; Weissenbacher, Georg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30596345063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Performance evaluation</topic><topic>Verification</topic><toplevel>online_resources</toplevel><creatorcontrib>Athavale, Anagha</creatorcontrib><creatorcontrib>Bartocci, Ezio</creatorcontrib><creatorcontrib>Christakis, Maria</creatorcontrib><creatorcontrib>Maffei, Matteo</creatorcontrib><creatorcontrib>Nickovic, Dejan</creatorcontrib><creatorcontrib>Weissenbacher, Georg</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Athavale, Anagha</au><au>Bartocci, Ezio</au><au>Christakis, Maria</au><au>Maffei, Matteo</au><au>Nickovic, Dejan</au><au>Weissenbacher, Georg</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Verifying Global Two-Safety Properties in Neural Networks with Confidence</atitle><jtitle>arXiv.org</jtitle><date>2024-06-17</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We present the first automated verification technique for confidence-based 2-safety properties, such as global robustness and global fairness, in deep neural networks (DNNs). Our approach combines self-composition to leverage existing reachability analysis techniques and a novel abstraction of the softmax function, which is amenable to automated verification. We characterize and prove the soundness of our static analysis technique. Furthermore, we implement it on top of Marabou, a safety analysis tool for neural networks, conducting a performance evaluation on several publicly available benchmarks for DNN verification.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3059634506 |
source | Free E- Journals |
subjects | Artificial neural networks Performance evaluation Verification |
title | Verifying Global Two-Safety Properties in Neural Networks with Confidence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A05%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Verifying%20Global%20Two-Safety%20Properties%20in%20Neural%20Networks%20with%20Confidence&rft.jtitle=arXiv.org&rft.au=Athavale,%20Anagha&rft.date=2024-06-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3059634506%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3059634506&rft_id=info:pmid/&rfr_iscdi=true |