Carleson measures for weighted Bergman--Zygmund spaces
For \(0
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-05 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Cho, Hong Rae Koo, Hyungwoon Young Joo Lee Pennanen, Atte Rättyä, Jouni Wu, Fanglei |
description | For \(0 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3059626708</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3059626708</sourcerecordid><originalsourceid>FETCH-proquest_journals_30596267083</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwc04sykktzs9TyE1NLC4tSi1WSMsvUihPzUzPKElNUXBKLUrPTczT1Y2qTM8tzUtRKC5ITE4t5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeGMDU0szoH0GFsbEqQIA1841bg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3059626708</pqid></control><display><type>article</type><title>Carleson measures for weighted Bergman--Zygmund spaces</title><source>Free E- Journals</source><creator>Cho, Hong Rae ; Koo, Hyungwoon ; Young Joo Lee ; Pennanen, Atte ; Rättyä, Jouni ; Wu, Fanglei</creator><creatorcontrib>Cho, Hong Rae ; Koo, Hyungwoon ; Young Joo Lee ; Pennanen, Atte ; Rättyä, Jouni ; Wu, Fanglei</creatorcontrib><description>For \(0<p<\infty\), \(\Psi:[0,\infty)\to(0,\infty)\) and a finite positive Borel measure \(\mu\) on the unit disc \(\mathbb{D}\), the Lebesgue--Zygmund space \(L^p_{\mu,\Psi}\) consists of all measurable functions \(f\) such that \(\lVert f \rVert_{L_{\mu, \Psi}^{p}}^p =\int_{\mathbb{D}}|f|^p\Psi(|f|)\,d\mu< \infty\). For an integrable radial function \(\omega\) on \(\mathbb{D}\), the corresponding weighted Bergman-Zygmund space \(A_{\omega, \Psi}^{p}\) is the set of all analytic functions in \(L_{\mu, \Psi}^{p}\) with \(d\mu=\omega\,dA\). The purpose of the paper is to characterize bounded (and compact) embeddings \(A_{\omega,\Psi}^{p}\subset L_{\mu, \Phi}^{q}\), when \(0<p\le q<\infty\), the functions \(\Psi\) and \(\Phi\) are essential monotonic, and \(\Psi,\Phi,\omega\) satisfy certain doubling properties. The tools developed on the way to the main results are applied to characterize bounded and compact integral operators acting from \(A^p_{\omega,\Psi}\) to \(A^q_{\nu,\Phi}\), provided \(\nu\) admits the same doubling property as \(\omega\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Analytic functions ; Operators (mathematics)</subject><ispartof>arXiv.org, 2024-05</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Cho, Hong Rae</creatorcontrib><creatorcontrib>Koo, Hyungwoon</creatorcontrib><creatorcontrib>Young Joo Lee</creatorcontrib><creatorcontrib>Pennanen, Atte</creatorcontrib><creatorcontrib>Rättyä, Jouni</creatorcontrib><creatorcontrib>Wu, Fanglei</creatorcontrib><title>Carleson measures for weighted Bergman--Zygmund spaces</title><title>arXiv.org</title><description>For \(0<p<\infty\), \(\Psi:[0,\infty)\to(0,\infty)\) and a finite positive Borel measure \(\mu\) on the unit disc \(\mathbb{D}\), the Lebesgue--Zygmund space \(L^p_{\mu,\Psi}\) consists of all measurable functions \(f\) such that \(\lVert f \rVert_{L_{\mu, \Psi}^{p}}^p =\int_{\mathbb{D}}|f|^p\Psi(|f|)\,d\mu< \infty\). For an integrable radial function \(\omega\) on \(\mathbb{D}\), the corresponding weighted Bergman-Zygmund space \(A_{\omega, \Psi}^{p}\) is the set of all analytic functions in \(L_{\mu, \Psi}^{p}\) with \(d\mu=\omega\,dA\). The purpose of the paper is to characterize bounded (and compact) embeddings \(A_{\omega,\Psi}^{p}\subset L_{\mu, \Phi}^{q}\), when \(0<p\le q<\infty\), the functions \(\Psi\) and \(\Phi\) are essential monotonic, and \(\Psi,\Phi,\omega\) satisfy certain doubling properties. The tools developed on the way to the main results are applied to characterize bounded and compact integral operators acting from \(A^p_{\omega,\Psi}\) to \(A^q_{\nu,\Phi}\), provided \(\nu\) admits the same doubling property as \(\omega\).</description><subject>Analytic functions</subject><subject>Operators (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwc04sykktzs9TyE1NLC4tSi1WSMsvUihPzUzPKElNUXBKLUrPTczT1Y2qTM8tzUtRKC5ITE4t5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeGMDU0szoH0GFsbEqQIA1841bg</recordid><startdate>20240522</startdate><enddate>20240522</enddate><creator>Cho, Hong Rae</creator><creator>Koo, Hyungwoon</creator><creator>Young Joo Lee</creator><creator>Pennanen, Atte</creator><creator>Rättyä, Jouni</creator><creator>Wu, Fanglei</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240522</creationdate><title>Carleson measures for weighted Bergman--Zygmund spaces</title><author>Cho, Hong Rae ; Koo, Hyungwoon ; Young Joo Lee ; Pennanen, Atte ; Rättyä, Jouni ; Wu, Fanglei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30596267083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analytic functions</topic><topic>Operators (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Cho, Hong Rae</creatorcontrib><creatorcontrib>Koo, Hyungwoon</creatorcontrib><creatorcontrib>Young Joo Lee</creatorcontrib><creatorcontrib>Pennanen, Atte</creatorcontrib><creatorcontrib>Rättyä, Jouni</creatorcontrib><creatorcontrib>Wu, Fanglei</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, Hong Rae</au><au>Koo, Hyungwoon</au><au>Young Joo Lee</au><au>Pennanen, Atte</au><au>Rättyä, Jouni</au><au>Wu, Fanglei</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Carleson measures for weighted Bergman--Zygmund spaces</atitle><jtitle>arXiv.org</jtitle><date>2024-05-22</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>For \(0<p<\infty\), \(\Psi:[0,\infty)\to(0,\infty)\) and a finite positive Borel measure \(\mu\) on the unit disc \(\mathbb{D}\), the Lebesgue--Zygmund space \(L^p_{\mu,\Psi}\) consists of all measurable functions \(f\) such that \(\lVert f \rVert_{L_{\mu, \Psi}^{p}}^p =\int_{\mathbb{D}}|f|^p\Psi(|f|)\,d\mu< \infty\). For an integrable radial function \(\omega\) on \(\mathbb{D}\), the corresponding weighted Bergman-Zygmund space \(A_{\omega, \Psi}^{p}\) is the set of all analytic functions in \(L_{\mu, \Psi}^{p}\) with \(d\mu=\omega\,dA\). The purpose of the paper is to characterize bounded (and compact) embeddings \(A_{\omega,\Psi}^{p}\subset L_{\mu, \Phi}^{q}\), when \(0<p\le q<\infty\), the functions \(\Psi\) and \(\Phi\) are essential monotonic, and \(\Psi,\Phi,\omega\) satisfy certain doubling properties. The tools developed on the way to the main results are applied to characterize bounded and compact integral operators acting from \(A^p_{\omega,\Psi}\) to \(A^q_{\nu,\Phi}\), provided \(\nu\) admits the same doubling property as \(\omega\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3059626708 |
source | Free E- Journals |
subjects | Analytic functions Operators (mathematics) |
title | Carleson measures for weighted Bergman--Zygmund spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T14%3A25%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Carleson%20measures%20for%20weighted%20Bergman--Zygmund%20spaces&rft.jtitle=arXiv.org&rft.au=Cho,%20Hong%20Rae&rft.date=2024-05-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3059626708%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3059626708&rft_id=info:pmid/&rfr_iscdi=true |