Carleson measures for weighted Bergman--Zygmund spaces

For \(0

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-05
Hauptverfasser: Cho, Hong Rae, Koo, Hyungwoon, Young Joo Lee, Pennanen, Atte, Rättyä, Jouni, Wu, Fanglei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Cho, Hong Rae
Koo, Hyungwoon
Young Joo Lee
Pennanen, Atte
Rättyä, Jouni
Wu, Fanglei
description For \(0
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3059626708</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3059626708</sourcerecordid><originalsourceid>FETCH-proquest_journals_30596267083</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwc04sykktzs9TyE1NLC4tSi1WSMsvUihPzUzPKElNUXBKLUrPTczT1Y2qTM8tzUtRKC5ITE4t5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeGMDU0szoH0GFsbEqQIA1841bg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3059626708</pqid></control><display><type>article</type><title>Carleson measures for weighted Bergman--Zygmund spaces</title><source>Free E- Journals</source><creator>Cho, Hong Rae ; Koo, Hyungwoon ; Young Joo Lee ; Pennanen, Atte ; Rättyä, Jouni ; Wu, Fanglei</creator><creatorcontrib>Cho, Hong Rae ; Koo, Hyungwoon ; Young Joo Lee ; Pennanen, Atte ; Rättyä, Jouni ; Wu, Fanglei</creatorcontrib><description>For \(0&lt;p&lt;\infty\), \(\Psi:[0,\infty)\to(0,\infty)\) and a finite positive Borel measure \(\mu\) on the unit disc \(\mathbb{D}\), the Lebesgue--Zygmund space \(L^p_{\mu,\Psi}\) consists of all measurable functions \(f\) such that \(\lVert f \rVert_{L_{\mu, \Psi}^{p}}^p =\int_{\mathbb{D}}|f|^p\Psi(|f|)\,d\mu&lt; \infty\). For an integrable radial function \(\omega\) on \(\mathbb{D}\), the corresponding weighted Bergman-Zygmund space \(A_{\omega, \Psi}^{p}\) is the set of all analytic functions in \(L_{\mu, \Psi}^{p}\) with \(d\mu=\omega\,dA\). The purpose of the paper is to characterize bounded (and compact) embeddings \(A_{\omega,\Psi}^{p}\subset L_{\mu, \Phi}^{q}\), when \(0&lt;p\le q&lt;\infty\), the functions \(\Psi\) and \(\Phi\) are essential monotonic, and \(\Psi,\Phi,\omega\) satisfy certain doubling properties. The tools developed on the way to the main results are applied to characterize bounded and compact integral operators acting from \(A^p_{\omega,\Psi}\) to \(A^q_{\nu,\Phi}\), provided \(\nu\) admits the same doubling property as \(\omega\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Analytic functions ; Operators (mathematics)</subject><ispartof>arXiv.org, 2024-05</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Cho, Hong Rae</creatorcontrib><creatorcontrib>Koo, Hyungwoon</creatorcontrib><creatorcontrib>Young Joo Lee</creatorcontrib><creatorcontrib>Pennanen, Atte</creatorcontrib><creatorcontrib>Rättyä, Jouni</creatorcontrib><creatorcontrib>Wu, Fanglei</creatorcontrib><title>Carleson measures for weighted Bergman--Zygmund spaces</title><title>arXiv.org</title><description>For \(0&lt;p&lt;\infty\), \(\Psi:[0,\infty)\to(0,\infty)\) and a finite positive Borel measure \(\mu\) on the unit disc \(\mathbb{D}\), the Lebesgue--Zygmund space \(L^p_{\mu,\Psi}\) consists of all measurable functions \(f\) such that \(\lVert f \rVert_{L_{\mu, \Psi}^{p}}^p =\int_{\mathbb{D}}|f|^p\Psi(|f|)\,d\mu&lt; \infty\). For an integrable radial function \(\omega\) on \(\mathbb{D}\), the corresponding weighted Bergman-Zygmund space \(A_{\omega, \Psi}^{p}\) is the set of all analytic functions in \(L_{\mu, \Psi}^{p}\) with \(d\mu=\omega\,dA\). The purpose of the paper is to characterize bounded (and compact) embeddings \(A_{\omega,\Psi}^{p}\subset L_{\mu, \Phi}^{q}\), when \(0&lt;p\le q&lt;\infty\), the functions \(\Psi\) and \(\Phi\) are essential monotonic, and \(\Psi,\Phi,\omega\) satisfy certain doubling properties. The tools developed on the way to the main results are applied to characterize bounded and compact integral operators acting from \(A^p_{\omega,\Psi}\) to \(A^q_{\nu,\Phi}\), provided \(\nu\) admits the same doubling property as \(\omega\).</description><subject>Analytic functions</subject><subject>Operators (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwc04sykktzs9TyE1NLC4tSi1WSMsvUihPzUzPKElNUXBKLUrPTczT1Y2qTM8tzUtRKC5ITE4t5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeGMDU0szoH0GFsbEqQIA1841bg</recordid><startdate>20240522</startdate><enddate>20240522</enddate><creator>Cho, Hong Rae</creator><creator>Koo, Hyungwoon</creator><creator>Young Joo Lee</creator><creator>Pennanen, Atte</creator><creator>Rättyä, Jouni</creator><creator>Wu, Fanglei</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240522</creationdate><title>Carleson measures for weighted Bergman--Zygmund spaces</title><author>Cho, Hong Rae ; Koo, Hyungwoon ; Young Joo Lee ; Pennanen, Atte ; Rättyä, Jouni ; Wu, Fanglei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30596267083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analytic functions</topic><topic>Operators (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Cho, Hong Rae</creatorcontrib><creatorcontrib>Koo, Hyungwoon</creatorcontrib><creatorcontrib>Young Joo Lee</creatorcontrib><creatorcontrib>Pennanen, Atte</creatorcontrib><creatorcontrib>Rättyä, Jouni</creatorcontrib><creatorcontrib>Wu, Fanglei</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, Hong Rae</au><au>Koo, Hyungwoon</au><au>Young Joo Lee</au><au>Pennanen, Atte</au><au>Rättyä, Jouni</au><au>Wu, Fanglei</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Carleson measures for weighted Bergman--Zygmund spaces</atitle><jtitle>arXiv.org</jtitle><date>2024-05-22</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>For \(0&lt;p&lt;\infty\), \(\Psi:[0,\infty)\to(0,\infty)\) and a finite positive Borel measure \(\mu\) on the unit disc \(\mathbb{D}\), the Lebesgue--Zygmund space \(L^p_{\mu,\Psi}\) consists of all measurable functions \(f\) such that \(\lVert f \rVert_{L_{\mu, \Psi}^{p}}^p =\int_{\mathbb{D}}|f|^p\Psi(|f|)\,d\mu&lt; \infty\). For an integrable radial function \(\omega\) on \(\mathbb{D}\), the corresponding weighted Bergman-Zygmund space \(A_{\omega, \Psi}^{p}\) is the set of all analytic functions in \(L_{\mu, \Psi}^{p}\) with \(d\mu=\omega\,dA\). The purpose of the paper is to characterize bounded (and compact) embeddings \(A_{\omega,\Psi}^{p}\subset L_{\mu, \Phi}^{q}\), when \(0&lt;p\le q&lt;\infty\), the functions \(\Psi\) and \(\Phi\) are essential monotonic, and \(\Psi,\Phi,\omega\) satisfy certain doubling properties. The tools developed on the way to the main results are applied to characterize bounded and compact integral operators acting from \(A^p_{\omega,\Psi}\) to \(A^q_{\nu,\Phi}\), provided \(\nu\) admits the same doubling property as \(\omega\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_3059626708
source Free E- Journals
subjects Analytic functions
Operators (mathematics)
title Carleson measures for weighted Bergman--Zygmund spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T14%3A25%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Carleson%20measures%20for%20weighted%20Bergman--Zygmund%20spaces&rft.jtitle=arXiv.org&rft.au=Cho,%20Hong%20Rae&rft.date=2024-05-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3059626708%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3059626708&rft_id=info:pmid/&rfr_iscdi=true