Generalized topological complexity and its monoidal version

In the context of the Lusternik-Schnirelmann category, researcher T. Srinivasan demonstrated that when the space under consideration is an absolute neighborhood retract, its category can be realized through arbitrary subsets, not necessarily open ones. The primary aim of this survey is to illustrate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-05
1. Verfasser: García-Calcines, J M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator García-Calcines, J M
description In the context of the Lusternik-Schnirelmann category, researcher T. Srinivasan demonstrated that when the space under consideration is an absolute neighborhood retract, its category can be realized through arbitrary subsets, not necessarily open ones. The primary aim of this survey is to illustrate how this result has been extended to the case of topological complexity and its monoidal version, along with some of its most significant implications.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3059626705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3059626705</sourcerecordid><originalsourceid>FETCH-proquest_journals_30596267053</originalsourceid><addsrcrecordid>eNqNjUsKwjAUAIMgWLR3CLguxMRUxaX4OYD7EpqnvJLmxSQV9fR24QFczWIGZsIKqdSq2q6lnLEypU4IIeuN1FoVbH8GD9E4_IDlmQI5umNrHG-pDw5emN_ceMsxJ96TJ7Sje0JMSH7BpjfjEpQ_ztnydLweLlWI9Bgg5aajIfpRNUroXT1OhVb_VV9k7zgH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3059626705</pqid></control><display><type>article</type><title>Generalized topological complexity and its monoidal version</title><source>Freely Accessible Journals</source><creator>García-Calcines, J M</creator><creatorcontrib>García-Calcines, J M</creatorcontrib><description>In the context of the Lusternik-Schnirelmann category, researcher T. Srinivasan demonstrated that when the space under consideration is an absolute neighborhood retract, its category can be realized through arbitrary subsets, not necessarily open ones. The primary aim of this survey is to illustrate how this result has been extended to the case of topological complexity and its monoidal version, along with some of its most significant implications.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Complexity ; Topology</subject><ispartof>arXiv.org, 2024-05</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>García-Calcines, J M</creatorcontrib><title>Generalized topological complexity and its monoidal version</title><title>arXiv.org</title><description>In the context of the Lusternik-Schnirelmann category, researcher T. Srinivasan demonstrated that when the space under consideration is an absolute neighborhood retract, its category can be realized through arbitrary subsets, not necessarily open ones. The primary aim of this survey is to illustrate how this result has been extended to the case of topological complexity and its monoidal version, along with some of its most significant implications.</description><subject>Complexity</subject><subject>Topology</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjUsKwjAUAIMgWLR3CLguxMRUxaX4OYD7EpqnvJLmxSQV9fR24QFczWIGZsIKqdSq2q6lnLEypU4IIeuN1FoVbH8GD9E4_IDlmQI5umNrHG-pDw5emN_ceMsxJ96TJ7Sje0JMSH7BpjfjEpQ_ztnydLweLlWI9Bgg5aajIfpRNUroXT1OhVb_VV9k7zgH</recordid><startdate>20240522</startdate><enddate>20240522</enddate><creator>García-Calcines, J M</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240522</creationdate><title>Generalized topological complexity and its monoidal version</title><author>García-Calcines, J M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30596267053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Complexity</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>García-Calcines, J M</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>García-Calcines, J M</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Generalized topological complexity and its monoidal version</atitle><jtitle>arXiv.org</jtitle><date>2024-05-22</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In the context of the Lusternik-Schnirelmann category, researcher T. Srinivasan demonstrated that when the space under consideration is an absolute neighborhood retract, its category can be realized through arbitrary subsets, not necessarily open ones. The primary aim of this survey is to illustrate how this result has been extended to the case of topological complexity and its monoidal version, along with some of its most significant implications.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_3059626705
source Freely Accessible Journals
subjects Complexity
Topology
title Generalized topological complexity and its monoidal version
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A23%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Generalized%20topological%20complexity%20and%20its%20monoidal%20version&rft.jtitle=arXiv.org&rft.au=Garc%C3%ADa-Calcines,%20J%20M&rft.date=2024-05-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3059626705%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3059626705&rft_id=info:pmid/&rfr_iscdi=true