Generalized topological complexity and its monoidal version
In the context of the Lusternik-Schnirelmann category, researcher T. Srinivasan demonstrated that when the space under consideration is an absolute neighborhood retract, its category can be realized through arbitrary subsets, not necessarily open ones. The primary aim of this survey is to illustrate...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-05 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | García-Calcines, J M |
description | In the context of the Lusternik-Schnirelmann category, researcher T. Srinivasan demonstrated that when the space under consideration is an absolute neighborhood retract, its category can be realized through arbitrary subsets, not necessarily open ones. The primary aim of this survey is to illustrate how this result has been extended to the case of topological complexity and its monoidal version, along with some of its most significant implications. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3059626705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3059626705</sourcerecordid><originalsourceid>FETCH-proquest_journals_30596267053</originalsourceid><addsrcrecordid>eNqNjUsKwjAUAIMgWLR3CLguxMRUxaX4OYD7EpqnvJLmxSQV9fR24QFczWIGZsIKqdSq2q6lnLEypU4IIeuN1FoVbH8GD9E4_IDlmQI5umNrHG-pDw5emN_ceMsxJ96TJ7Sje0JMSH7BpjfjEpQ_ztnydLweLlWI9Bgg5aajIfpRNUroXT1OhVb_VV9k7zgH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3059626705</pqid></control><display><type>article</type><title>Generalized topological complexity and its monoidal version</title><source>Freely Accessible Journals</source><creator>García-Calcines, J M</creator><creatorcontrib>García-Calcines, J M</creatorcontrib><description>In the context of the Lusternik-Schnirelmann category, researcher T. Srinivasan demonstrated that when the space under consideration is an absolute neighborhood retract, its category can be realized through arbitrary subsets, not necessarily open ones. The primary aim of this survey is to illustrate how this result has been extended to the case of topological complexity and its monoidal version, along with some of its most significant implications.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Complexity ; Topology</subject><ispartof>arXiv.org, 2024-05</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>García-Calcines, J M</creatorcontrib><title>Generalized topological complexity and its monoidal version</title><title>arXiv.org</title><description>In the context of the Lusternik-Schnirelmann category, researcher T. Srinivasan demonstrated that when the space under consideration is an absolute neighborhood retract, its category can be realized through arbitrary subsets, not necessarily open ones. The primary aim of this survey is to illustrate how this result has been extended to the case of topological complexity and its monoidal version, along with some of its most significant implications.</description><subject>Complexity</subject><subject>Topology</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjUsKwjAUAIMgWLR3CLguxMRUxaX4OYD7EpqnvJLmxSQV9fR24QFczWIGZsIKqdSq2q6lnLEypU4IIeuN1FoVbH8GD9E4_IDlmQI5umNrHG-pDw5emN_ceMsxJ96TJ7Sje0JMSH7BpjfjEpQ_ztnydLweLlWI9Bgg5aajIfpRNUroXT1OhVb_VV9k7zgH</recordid><startdate>20240522</startdate><enddate>20240522</enddate><creator>García-Calcines, J M</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240522</creationdate><title>Generalized topological complexity and its monoidal version</title><author>García-Calcines, J M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30596267053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Complexity</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>García-Calcines, J M</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>García-Calcines, J M</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Generalized topological complexity and its monoidal version</atitle><jtitle>arXiv.org</jtitle><date>2024-05-22</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In the context of the Lusternik-Schnirelmann category, researcher T. Srinivasan demonstrated that when the space under consideration is an absolute neighborhood retract, its category can be realized through arbitrary subsets, not necessarily open ones. The primary aim of this survey is to illustrate how this result has been extended to the case of topological complexity and its monoidal version, along with some of its most significant implications.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3059626705 |
source | Freely Accessible Journals |
subjects | Complexity Topology |
title | Generalized topological complexity and its monoidal version |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A23%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Generalized%20topological%20complexity%20and%20its%20monoidal%20version&rft.jtitle=arXiv.org&rft.au=Garc%C3%ADa-Calcines,%20J%20M&rft.date=2024-05-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3059626705%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3059626705&rft_id=info:pmid/&rfr_iscdi=true |