Electrooculography signal as alternative method to operate wheelchair based on SVM classifier
People with impairment conditions have some difficulties with daily activities such as controlling a wheelchair. Biosignal is one of the promising methods as an alternative signal to build communication between humans and machines. In this study, an alternative method to control a wheelchair is prop...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2891 |
creator | Rusydi, Muhammad Ilhamdi Baiqi, Amimul Ummah Rahman, Muhammad Arief Jordan, Adam Nugroho, Hermawan Matsushita, Kojiro Syafii Sari, Yuli Afmi Ropita Windasari, Noverika Setiawan, Agung Wahyu Muguro, Joseph Sasaki, Minoru |
description | People with impairment conditions have some difficulties with daily activities such as controlling a wheelchair. Biosignal is one of the promising methods as an alternative signal to build communication between humans and machines. In this study, an alternative method to control a wheelchair is proposed. A prototype wheelchair is controlled using an EOG signal based on an SVM classifier. Four types of gaze motions: right; left; up and down are clustered using the one versus one rule. The SVM is trained using 356 data and tested with 100 data. The trained SVM has an accuracy of 0.99 for all types of gaze motions. Precision of the up and down gaze motion is 0.96, while the right and left gaze motion has a precision of 1.00. The trained SVM is implemented for real-time control of the wheelchair prototype. Seven participants controlled the wheelchair and moved inside a trajectory from the start to the finish points. The result shows that participants could operate the wheelchair using the EOG signal, even though they had difficulties because of comfort and accuracy issues of the system. |
doi_str_mv | 10.1063/5.0200941 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3059575575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3059575575</sourcerecordid><originalsourceid>FETCH-LOGICAL-p631-e80425e0a4381625d6608842a263228fb76f5ec31ba1e04485f54cf04a06b6b73</originalsourceid><addsrcrecordid>eNotUEtLw0AYXETBWj34Dxa8Can7TnqUUh9Q8WARLxK-bL80Kdts3N0q_femtDAwMAzDzBByy9mEMyMf9IQJxqaKn5ER15pnueHmnIwOWiaU_LokVzFuGBPTPC9G5Hvu0Kbgvd05vw7QN3sa23UHjkKk4BKGDlL7i3SLqfErmjz1PQZISP8aRGcbaAOtIOKK-o5-fL5R6yDGtm4xXJOLGlzEmxOPyfJpvpy9ZIv359fZ4yLrjeQZFkwJjQyULLgRemUMKwolQBgpRFFXuak1Wskr4MiUKnStla2ZAmYqU-VyTO6OsX3wPzuMqdz43dDbxVIyPdW5HjC47o-uaNs0bPJd2Yd2C2FfclYe3it1eXpP_gOdZWEH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3059575575</pqid></control><display><type>conference_proceeding</type><title>Electrooculography signal as alternative method to operate wheelchair based on SVM classifier</title><source>AIP Journals Complete</source><creator>Rusydi, Muhammad Ilhamdi ; Baiqi, Amimul Ummah ; Rahman, Muhammad Arief ; Jordan, Adam ; Nugroho, Hermawan ; Matsushita, Kojiro ; Syafii ; Sari, Yuli Afmi Ropita ; Windasari, Noverika ; Setiawan, Agung Wahyu ; Muguro, Joseph ; Sasaki, Minoru</creator><contributor>Awuzie, Bankole ; Anggraini, Vivi ; Qysmah, Ansam Mostafa Abdelh ; Zakaria, Indra Junaidi ; Masrilayanti ; Chan, Toong-Khuan ; Madhoun, Wesam Al</contributor><creatorcontrib>Rusydi, Muhammad Ilhamdi ; Baiqi, Amimul Ummah ; Rahman, Muhammad Arief ; Jordan, Adam ; Nugroho, Hermawan ; Matsushita, Kojiro ; Syafii ; Sari, Yuli Afmi Ropita ; Windasari, Noverika ; Setiawan, Agung Wahyu ; Muguro, Joseph ; Sasaki, Minoru ; Awuzie, Bankole ; Anggraini, Vivi ; Qysmah, Ansam Mostafa Abdelh ; Zakaria, Indra Junaidi ; Masrilayanti ; Chan, Toong-Khuan ; Madhoun, Wesam Al</creatorcontrib><description>People with impairment conditions have some difficulties with daily activities such as controlling a wheelchair. Biosignal is one of the promising methods as an alternative signal to build communication between humans and machines. In this study, an alternative method to control a wheelchair is proposed. A prototype wheelchair is controlled using an EOG signal based on an SVM classifier. Four types of gaze motions: right; left; up and down are clustered using the one versus one rule. The SVM is trained using 356 data and tested with 100 data. The trained SVM has an accuracy of 0.99 for all types of gaze motions. Precision of the up and down gaze motion is 0.96, while the right and left gaze motion has a precision of 1.00. The trained SVM is implemented for real-time control of the wheelchair prototype. Seven participants controlled the wheelchair and moved inside a trajectory from the start to the finish points. The result shows that participants could operate the wheelchair using the EOG signal, even though they had difficulties because of comfort and accuracy issues of the system.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0200941</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Classifiers ; Control methods ; Electrooculography ; Prototypes ; Support vector machines ; Wheelchairs</subject><ispartof>AIP Conference Proceedings, 2024, Vol.2891 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0200941$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Awuzie, Bankole</contributor><contributor>Anggraini, Vivi</contributor><contributor>Qysmah, Ansam Mostafa Abdelh</contributor><contributor>Zakaria, Indra Junaidi</contributor><contributor>Masrilayanti</contributor><contributor>Chan, Toong-Khuan</contributor><contributor>Madhoun, Wesam Al</contributor><creatorcontrib>Rusydi, Muhammad Ilhamdi</creatorcontrib><creatorcontrib>Baiqi, Amimul Ummah</creatorcontrib><creatorcontrib>Rahman, Muhammad Arief</creatorcontrib><creatorcontrib>Jordan, Adam</creatorcontrib><creatorcontrib>Nugroho, Hermawan</creatorcontrib><creatorcontrib>Matsushita, Kojiro</creatorcontrib><creatorcontrib>Syafii</creatorcontrib><creatorcontrib>Sari, Yuli Afmi Ropita</creatorcontrib><creatorcontrib>Windasari, Noverika</creatorcontrib><creatorcontrib>Setiawan, Agung Wahyu</creatorcontrib><creatorcontrib>Muguro, Joseph</creatorcontrib><creatorcontrib>Sasaki, Minoru</creatorcontrib><title>Electrooculography signal as alternative method to operate wheelchair based on SVM classifier</title><title>AIP Conference Proceedings</title><description>People with impairment conditions have some difficulties with daily activities such as controlling a wheelchair. Biosignal is one of the promising methods as an alternative signal to build communication between humans and machines. In this study, an alternative method to control a wheelchair is proposed. A prototype wheelchair is controlled using an EOG signal based on an SVM classifier. Four types of gaze motions: right; left; up and down are clustered using the one versus one rule. The SVM is trained using 356 data and tested with 100 data. The trained SVM has an accuracy of 0.99 for all types of gaze motions. Precision of the up and down gaze motion is 0.96, while the right and left gaze motion has a precision of 1.00. The trained SVM is implemented for real-time control of the wheelchair prototype. Seven participants controlled the wheelchair and moved inside a trajectory from the start to the finish points. The result shows that participants could operate the wheelchair using the EOG signal, even though they had difficulties because of comfort and accuracy issues of the system.</description><subject>Classifiers</subject><subject>Control methods</subject><subject>Electrooculography</subject><subject>Prototypes</subject><subject>Support vector machines</subject><subject>Wheelchairs</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotUEtLw0AYXETBWj34Dxa8Can7TnqUUh9Q8WARLxK-bL80Kdts3N0q_femtDAwMAzDzBByy9mEMyMf9IQJxqaKn5ER15pnueHmnIwOWiaU_LokVzFuGBPTPC9G5Hvu0Kbgvd05vw7QN3sa23UHjkKk4BKGDlL7i3SLqfErmjz1PQZISP8aRGcbaAOtIOKK-o5-fL5R6yDGtm4xXJOLGlzEmxOPyfJpvpy9ZIv359fZ4yLrjeQZFkwJjQyULLgRemUMKwolQBgpRFFXuak1Wskr4MiUKnStla2ZAmYqU-VyTO6OsX3wPzuMqdz43dDbxVIyPdW5HjC47o-uaNs0bPJd2Yd2C2FfclYe3it1eXpP_gOdZWEH</recordid><startdate>20240524</startdate><enddate>20240524</enddate><creator>Rusydi, Muhammad Ilhamdi</creator><creator>Baiqi, Amimul Ummah</creator><creator>Rahman, Muhammad Arief</creator><creator>Jordan, Adam</creator><creator>Nugroho, Hermawan</creator><creator>Matsushita, Kojiro</creator><creator>Syafii</creator><creator>Sari, Yuli Afmi Ropita</creator><creator>Windasari, Noverika</creator><creator>Setiawan, Agung Wahyu</creator><creator>Muguro, Joseph</creator><creator>Sasaki, Minoru</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240524</creationdate><title>Electrooculography signal as alternative method to operate wheelchair based on SVM classifier</title><author>Rusydi, Muhammad Ilhamdi ; Baiqi, Amimul Ummah ; Rahman, Muhammad Arief ; Jordan, Adam ; Nugroho, Hermawan ; Matsushita, Kojiro ; Syafii ; Sari, Yuli Afmi Ropita ; Windasari, Noverika ; Setiawan, Agung Wahyu ; Muguro, Joseph ; Sasaki, Minoru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p631-e80425e0a4381625d6608842a263228fb76f5ec31ba1e04485f54cf04a06b6b73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Classifiers</topic><topic>Control methods</topic><topic>Electrooculography</topic><topic>Prototypes</topic><topic>Support vector machines</topic><topic>Wheelchairs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rusydi, Muhammad Ilhamdi</creatorcontrib><creatorcontrib>Baiqi, Amimul Ummah</creatorcontrib><creatorcontrib>Rahman, Muhammad Arief</creatorcontrib><creatorcontrib>Jordan, Adam</creatorcontrib><creatorcontrib>Nugroho, Hermawan</creatorcontrib><creatorcontrib>Matsushita, Kojiro</creatorcontrib><creatorcontrib>Syafii</creatorcontrib><creatorcontrib>Sari, Yuli Afmi Ropita</creatorcontrib><creatorcontrib>Windasari, Noverika</creatorcontrib><creatorcontrib>Setiawan, Agung Wahyu</creatorcontrib><creatorcontrib>Muguro, Joseph</creatorcontrib><creatorcontrib>Sasaki, Minoru</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rusydi, Muhammad Ilhamdi</au><au>Baiqi, Amimul Ummah</au><au>Rahman, Muhammad Arief</au><au>Jordan, Adam</au><au>Nugroho, Hermawan</au><au>Matsushita, Kojiro</au><au>Syafii</au><au>Sari, Yuli Afmi Ropita</au><au>Windasari, Noverika</au><au>Setiawan, Agung Wahyu</au><au>Muguro, Joseph</au><au>Sasaki, Minoru</au><au>Awuzie, Bankole</au><au>Anggraini, Vivi</au><au>Qysmah, Ansam Mostafa Abdelh</au><au>Zakaria, Indra Junaidi</au><au>Masrilayanti</au><au>Chan, Toong-Khuan</au><au>Madhoun, Wesam Al</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Electrooculography signal as alternative method to operate wheelchair based on SVM classifier</atitle><btitle>AIP Conference Proceedings</btitle><date>2024-05-24</date><risdate>2024</risdate><volume>2891</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>People with impairment conditions have some difficulties with daily activities such as controlling a wheelchair. Biosignal is one of the promising methods as an alternative signal to build communication between humans and machines. In this study, an alternative method to control a wheelchair is proposed. A prototype wheelchair is controlled using an EOG signal based on an SVM classifier. Four types of gaze motions: right; left; up and down are clustered using the one versus one rule. The SVM is trained using 356 data and tested with 100 data. The trained SVM has an accuracy of 0.99 for all types of gaze motions. Precision of the up and down gaze motion is 0.96, while the right and left gaze motion has a precision of 1.00. The trained SVM is implemented for real-time control of the wheelchair prototype. Seven participants controlled the wheelchair and moved inside a trajectory from the start to the finish points. The result shows that participants could operate the wheelchair using the EOG signal, even though they had difficulties because of comfort and accuracy issues of the system.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0200941</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP Conference Proceedings, 2024, Vol.2891 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_3059575575 |
source | AIP Journals Complete |
subjects | Classifiers Control methods Electrooculography Prototypes Support vector machines Wheelchairs |
title | Electrooculography signal as alternative method to operate wheelchair based on SVM classifier |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A31%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Electrooculography%20signal%20as%20alternative%20method%20to%20operate%20wheelchair%20based%20on%20SVM%20classifier&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Rusydi,%20Muhammad%20Ilhamdi&rft.date=2024-05-24&rft.volume=2891&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0200941&rft_dat=%3Cproquest_scita%3E3059575575%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3059575575&rft_id=info:pmid/&rfr_iscdi=true |