Electrooculography signal as alternative method to operate wheelchair based on SVM classifier

People with impairment conditions have some difficulties with daily activities such as controlling a wheelchair. Biosignal is one of the promising methods as an alternative signal to build communication between humans and machines. In this study, an alternative method to control a wheelchair is prop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rusydi, Muhammad Ilhamdi, Baiqi, Amimul Ummah, Rahman, Muhammad Arief, Jordan, Adam, Nugroho, Hermawan, Matsushita, Kojiro, Syafii, Sari, Yuli Afmi Ropita, Windasari, Noverika, Setiawan, Agung Wahyu, Muguro, Joseph, Sasaki, Minoru
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2891
creator Rusydi, Muhammad Ilhamdi
Baiqi, Amimul Ummah
Rahman, Muhammad Arief
Jordan, Adam
Nugroho, Hermawan
Matsushita, Kojiro
Syafii
Sari, Yuli Afmi Ropita
Windasari, Noverika
Setiawan, Agung Wahyu
Muguro, Joseph
Sasaki, Minoru
description People with impairment conditions have some difficulties with daily activities such as controlling a wheelchair. Biosignal is one of the promising methods as an alternative signal to build communication between humans and machines. In this study, an alternative method to control a wheelchair is proposed. A prototype wheelchair is controlled using an EOG signal based on an SVM classifier. Four types of gaze motions: right; left; up and down are clustered using the one versus one rule. The SVM is trained using 356 data and tested with 100 data. The trained SVM has an accuracy of 0.99 for all types of gaze motions. Precision of the up and down gaze motion is 0.96, while the right and left gaze motion has a precision of 1.00. The trained SVM is implemented for real-time control of the wheelchair prototype. Seven participants controlled the wheelchair and moved inside a trajectory from the start to the finish points. The result shows that participants could operate the wheelchair using the EOG signal, even though they had difficulties because of comfort and accuracy issues of the system.
doi_str_mv 10.1063/5.0200941
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3059575575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3059575575</sourcerecordid><originalsourceid>FETCH-LOGICAL-p631-e80425e0a4381625d6608842a263228fb76f5ec31ba1e04485f54cf04a06b6b73</originalsourceid><addsrcrecordid>eNotUEtLw0AYXETBWj34Dxa8Can7TnqUUh9Q8WARLxK-bL80Kdts3N0q_femtDAwMAzDzBByy9mEMyMf9IQJxqaKn5ER15pnueHmnIwOWiaU_LokVzFuGBPTPC9G5Hvu0Kbgvd05vw7QN3sa23UHjkKk4BKGDlL7i3SLqfErmjz1PQZISP8aRGcbaAOtIOKK-o5-fL5R6yDGtm4xXJOLGlzEmxOPyfJpvpy9ZIv359fZ4yLrjeQZFkwJjQyULLgRemUMKwolQBgpRFFXuak1Wskr4MiUKnStla2ZAmYqU-VyTO6OsX3wPzuMqdz43dDbxVIyPdW5HjC47o-uaNs0bPJd2Yd2C2FfclYe3it1eXpP_gOdZWEH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3059575575</pqid></control><display><type>conference_proceeding</type><title>Electrooculography signal as alternative method to operate wheelchair based on SVM classifier</title><source>AIP Journals Complete</source><creator>Rusydi, Muhammad Ilhamdi ; Baiqi, Amimul Ummah ; Rahman, Muhammad Arief ; Jordan, Adam ; Nugroho, Hermawan ; Matsushita, Kojiro ; Syafii ; Sari, Yuli Afmi Ropita ; Windasari, Noverika ; Setiawan, Agung Wahyu ; Muguro, Joseph ; Sasaki, Minoru</creator><contributor>Awuzie, Bankole ; Anggraini, Vivi ; Qysmah, Ansam Mostafa Abdelh ; Zakaria, Indra Junaidi ; Masrilayanti ; Chan, Toong-Khuan ; Madhoun, Wesam Al</contributor><creatorcontrib>Rusydi, Muhammad Ilhamdi ; Baiqi, Amimul Ummah ; Rahman, Muhammad Arief ; Jordan, Adam ; Nugroho, Hermawan ; Matsushita, Kojiro ; Syafii ; Sari, Yuli Afmi Ropita ; Windasari, Noverika ; Setiawan, Agung Wahyu ; Muguro, Joseph ; Sasaki, Minoru ; Awuzie, Bankole ; Anggraini, Vivi ; Qysmah, Ansam Mostafa Abdelh ; Zakaria, Indra Junaidi ; Masrilayanti ; Chan, Toong-Khuan ; Madhoun, Wesam Al</creatorcontrib><description>People with impairment conditions have some difficulties with daily activities such as controlling a wheelchair. Biosignal is one of the promising methods as an alternative signal to build communication between humans and machines. In this study, an alternative method to control a wheelchair is proposed. A prototype wheelchair is controlled using an EOG signal based on an SVM classifier. Four types of gaze motions: right; left; up and down are clustered using the one versus one rule. The SVM is trained using 356 data and tested with 100 data. The trained SVM has an accuracy of 0.99 for all types of gaze motions. Precision of the up and down gaze motion is 0.96, while the right and left gaze motion has a precision of 1.00. The trained SVM is implemented for real-time control of the wheelchair prototype. Seven participants controlled the wheelchair and moved inside a trajectory from the start to the finish points. The result shows that participants could operate the wheelchair using the EOG signal, even though they had difficulties because of comfort and accuracy issues of the system.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0200941</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Classifiers ; Control methods ; Electrooculography ; Prototypes ; Support vector machines ; Wheelchairs</subject><ispartof>AIP Conference Proceedings, 2024, Vol.2891 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0200941$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Awuzie, Bankole</contributor><contributor>Anggraini, Vivi</contributor><contributor>Qysmah, Ansam Mostafa Abdelh</contributor><contributor>Zakaria, Indra Junaidi</contributor><contributor>Masrilayanti</contributor><contributor>Chan, Toong-Khuan</contributor><contributor>Madhoun, Wesam Al</contributor><creatorcontrib>Rusydi, Muhammad Ilhamdi</creatorcontrib><creatorcontrib>Baiqi, Amimul Ummah</creatorcontrib><creatorcontrib>Rahman, Muhammad Arief</creatorcontrib><creatorcontrib>Jordan, Adam</creatorcontrib><creatorcontrib>Nugroho, Hermawan</creatorcontrib><creatorcontrib>Matsushita, Kojiro</creatorcontrib><creatorcontrib>Syafii</creatorcontrib><creatorcontrib>Sari, Yuli Afmi Ropita</creatorcontrib><creatorcontrib>Windasari, Noverika</creatorcontrib><creatorcontrib>Setiawan, Agung Wahyu</creatorcontrib><creatorcontrib>Muguro, Joseph</creatorcontrib><creatorcontrib>Sasaki, Minoru</creatorcontrib><title>Electrooculography signal as alternative method to operate wheelchair based on SVM classifier</title><title>AIP Conference Proceedings</title><description>People with impairment conditions have some difficulties with daily activities such as controlling a wheelchair. Biosignal is one of the promising methods as an alternative signal to build communication between humans and machines. In this study, an alternative method to control a wheelchair is proposed. A prototype wheelchair is controlled using an EOG signal based on an SVM classifier. Four types of gaze motions: right; left; up and down are clustered using the one versus one rule. The SVM is trained using 356 data and tested with 100 data. The trained SVM has an accuracy of 0.99 for all types of gaze motions. Precision of the up and down gaze motion is 0.96, while the right and left gaze motion has a precision of 1.00. The trained SVM is implemented for real-time control of the wheelchair prototype. Seven participants controlled the wheelchair and moved inside a trajectory from the start to the finish points. The result shows that participants could operate the wheelchair using the EOG signal, even though they had difficulties because of comfort and accuracy issues of the system.</description><subject>Classifiers</subject><subject>Control methods</subject><subject>Electrooculography</subject><subject>Prototypes</subject><subject>Support vector machines</subject><subject>Wheelchairs</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotUEtLw0AYXETBWj34Dxa8Can7TnqUUh9Q8WARLxK-bL80Kdts3N0q_femtDAwMAzDzBByy9mEMyMf9IQJxqaKn5ER15pnueHmnIwOWiaU_LokVzFuGBPTPC9G5Hvu0Kbgvd05vw7QN3sa23UHjkKk4BKGDlL7i3SLqfErmjz1PQZISP8aRGcbaAOtIOKK-o5-fL5R6yDGtm4xXJOLGlzEmxOPyfJpvpy9ZIv359fZ4yLrjeQZFkwJjQyULLgRemUMKwolQBgpRFFXuak1Wskr4MiUKnStla2ZAmYqU-VyTO6OsX3wPzuMqdz43dDbxVIyPdW5HjC47o-uaNs0bPJd2Yd2C2FfclYe3it1eXpP_gOdZWEH</recordid><startdate>20240524</startdate><enddate>20240524</enddate><creator>Rusydi, Muhammad Ilhamdi</creator><creator>Baiqi, Amimul Ummah</creator><creator>Rahman, Muhammad Arief</creator><creator>Jordan, Adam</creator><creator>Nugroho, Hermawan</creator><creator>Matsushita, Kojiro</creator><creator>Syafii</creator><creator>Sari, Yuli Afmi Ropita</creator><creator>Windasari, Noverika</creator><creator>Setiawan, Agung Wahyu</creator><creator>Muguro, Joseph</creator><creator>Sasaki, Minoru</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240524</creationdate><title>Electrooculography signal as alternative method to operate wheelchair based on SVM classifier</title><author>Rusydi, Muhammad Ilhamdi ; Baiqi, Amimul Ummah ; Rahman, Muhammad Arief ; Jordan, Adam ; Nugroho, Hermawan ; Matsushita, Kojiro ; Syafii ; Sari, Yuli Afmi Ropita ; Windasari, Noverika ; Setiawan, Agung Wahyu ; Muguro, Joseph ; Sasaki, Minoru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p631-e80425e0a4381625d6608842a263228fb76f5ec31ba1e04485f54cf04a06b6b73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Classifiers</topic><topic>Control methods</topic><topic>Electrooculography</topic><topic>Prototypes</topic><topic>Support vector machines</topic><topic>Wheelchairs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rusydi, Muhammad Ilhamdi</creatorcontrib><creatorcontrib>Baiqi, Amimul Ummah</creatorcontrib><creatorcontrib>Rahman, Muhammad Arief</creatorcontrib><creatorcontrib>Jordan, Adam</creatorcontrib><creatorcontrib>Nugroho, Hermawan</creatorcontrib><creatorcontrib>Matsushita, Kojiro</creatorcontrib><creatorcontrib>Syafii</creatorcontrib><creatorcontrib>Sari, Yuli Afmi Ropita</creatorcontrib><creatorcontrib>Windasari, Noverika</creatorcontrib><creatorcontrib>Setiawan, Agung Wahyu</creatorcontrib><creatorcontrib>Muguro, Joseph</creatorcontrib><creatorcontrib>Sasaki, Minoru</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rusydi, Muhammad Ilhamdi</au><au>Baiqi, Amimul Ummah</au><au>Rahman, Muhammad Arief</au><au>Jordan, Adam</au><au>Nugroho, Hermawan</au><au>Matsushita, Kojiro</au><au>Syafii</au><au>Sari, Yuli Afmi Ropita</au><au>Windasari, Noverika</au><au>Setiawan, Agung Wahyu</au><au>Muguro, Joseph</au><au>Sasaki, Minoru</au><au>Awuzie, Bankole</au><au>Anggraini, Vivi</au><au>Qysmah, Ansam Mostafa Abdelh</au><au>Zakaria, Indra Junaidi</au><au>Masrilayanti</au><au>Chan, Toong-Khuan</au><au>Madhoun, Wesam Al</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Electrooculography signal as alternative method to operate wheelchair based on SVM classifier</atitle><btitle>AIP Conference Proceedings</btitle><date>2024-05-24</date><risdate>2024</risdate><volume>2891</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>People with impairment conditions have some difficulties with daily activities such as controlling a wheelchair. Biosignal is one of the promising methods as an alternative signal to build communication between humans and machines. In this study, an alternative method to control a wheelchair is proposed. A prototype wheelchair is controlled using an EOG signal based on an SVM classifier. Four types of gaze motions: right; left; up and down are clustered using the one versus one rule. The SVM is trained using 356 data and tested with 100 data. The trained SVM has an accuracy of 0.99 for all types of gaze motions. Precision of the up and down gaze motion is 0.96, while the right and left gaze motion has a precision of 1.00. The trained SVM is implemented for real-time control of the wheelchair prototype. Seven participants controlled the wheelchair and moved inside a trajectory from the start to the finish points. The result shows that participants could operate the wheelchair using the EOG signal, even though they had difficulties because of comfort and accuracy issues of the system.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0200941</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2024, Vol.2891 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_3059575575
source AIP Journals Complete
subjects Classifiers
Control methods
Electrooculography
Prototypes
Support vector machines
Wheelchairs
title Electrooculography signal as alternative method to operate wheelchair based on SVM classifier
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A31%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Electrooculography%20signal%20as%20alternative%20method%20to%20operate%20wheelchair%20based%20on%20SVM%20classifier&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Rusydi,%20Muhammad%20Ilhamdi&rft.date=2024-05-24&rft.volume=2891&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0200941&rft_dat=%3Cproquest_scita%3E3059575575%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3059575575&rft_id=info:pmid/&rfr_iscdi=true