Flexible Quantization for Efficient Convolutional Neural Networks
This work focuses on the efficient quantization of convolutional neural networks (CNNs). Specifically, we introduce a method called non-uniform uniform quantization (NUUQ), a novel quantization methodology that combines the benefits of non-uniform quantization, such as high compression levels, with...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2024-05, Vol.13 (10), p.1923 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work focuses on the efficient quantization of convolutional neural networks (CNNs). Specifically, we introduce a method called non-uniform uniform quantization (NUUQ), a novel quantization methodology that combines the benefits of non-uniform quantization, such as high compression levels, with the advantages of uniform quantization, which enables an efficient implementation in fixed-point hardware. NUUQ is based on decoupling the quantization levels from the number of bits. This decoupling allows for a trade-off between the spatial and temporal complexity of the implementation, which can be leveraged to further reduce the spatial complexity of the CNN, without a significant performance loss. Additionally, we explore different quantization configurations and address typical use cases. The NUUQ algorithm demonstrates the capability to achieve compression levels equivalent to 2 bits without an accuracy loss and even levels equivalent to ∼1.58 bits, but with a loss in performance of only ∼0.6%. |
---|---|
ISSN: | 2079-9292 2079-9292 |
DOI: | 10.3390/electronics13101923 |