Algebraic Speed Estimation for Sensorless Induction Motor Control: Insights from an Electric Vehicle Drive Cycle

Induction motors (IMs) must meet high reliability and safety standards in mission-critical applications, such as electric vehicles (EVs), where sensorless control strategies are fundamental. However, sensorless rotor speed estimation demands improvements to overcome filtering distortions, tuning com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2024-05, Vol.13 (10), p.1937
Hauptverfasser: Neira-García, Jorge, Beltrán-Pulido, Andrés, Cortés-Romero, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 1937
container_title Electronics (Basel)
container_volume 13
creator Neira-García, Jorge
Beltrán-Pulido, Andrés
Cortés-Romero, John
description Induction motors (IMs) must meet high reliability and safety standards in mission-critical applications, such as electric vehicles (EVs), where sensorless control strategies are fundamental. However, sensorless rotor speed estimation demands improvements to overcome filtering distortions, tuning complexities, and sensitivity to IM model mismatch. Algebraic methods offer inherent filtering capabilities and design flexibility to address these challenges without introducing additional dynamics into the control system. The objective of this paper is to provide an algebraic estimation strategy that yields an accurate rotor speed estimate for sensorless IM control. The strategy includes an algebraic estimator with single-parameter tuning and inherent filtering action. We propose an EV case study to experimentally evaluate and compare its performance with a typical drive cycle and a dynamic torque load that emulates a small-scale EV power train. The algebraic estimator exhibited a signal-to-noise ratio (SNR) of 43 dB. The closed-loop experiment for the EV case study showed average tracking errors below 1 rad/s and similar performance compared to a well-known sensorless strategy. Our results show that the proposed algebraic estimation strategy works effectively in a nominal speed range for a practical IM sensorless application. The algebraic estimator only requires single-parameter tuning and potentially facilitates IM model updates using a resetting scheme.
doi_str_mv 10.3390/electronics13101937
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3059437747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A795403141</galeid><sourcerecordid>A795403141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-d35b08c9ac2ba9d9bbc7678c109eac4916e1dd301f8b517970fcc2255447645e3</originalsourceid><addsrcrecordid>eNptUcFOwzAMjRBITLAv4BKJc0fSpEvDbSoDJg1xGHCt0tTdMnVJSTKk_T1h48AB--AnP9vPshG6oWTCmCR30IOO3lmjA2WUUMnEGRrlRMhM5jI__4Mv0TiELUkmKSsZGaFh1q-h8cpovBoAWjwP0exUNM7iznm8Ahuc7yEEvLDtXh-JFxcTVTmbZPv7RASz3sSAO-92WFk8P26URn7Axuge8IM3X4CrQ8LX6KJTfYDxb7xC74_zt-o5W74-LarZMtOM0pi1rGhIqaXSeaNkK5tGi6koNSUSlOaSToG2LSO0K5uCCilIp3WeFwXnYsoLYFfo9jR38O5zDyHWW7f3NknWjBSSMyG4SFWTU9Va9VAb27nolU7ews5oZ6EzKT8TsuCEUU5TAzs1aO9C8NDVg0_38oeakvrnHfU_72Df1AaBNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3059437747</pqid></control><display><type>article</type><title>Algebraic Speed Estimation for Sensorless Induction Motor Control: Insights from an Electric Vehicle Drive Cycle</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Neira-García, Jorge ; Beltrán-Pulido, Andrés ; Cortés-Romero, John</creator><creatorcontrib>Neira-García, Jorge ; Beltrán-Pulido, Andrés ; Cortés-Romero, John</creatorcontrib><description>Induction motors (IMs) must meet high reliability and safety standards in mission-critical applications, such as electric vehicles (EVs), where sensorless control strategies are fundamental. However, sensorless rotor speed estimation demands improvements to overcome filtering distortions, tuning complexities, and sensitivity to IM model mismatch. Algebraic methods offer inherent filtering capabilities and design flexibility to address these challenges without introducing additional dynamics into the control system. The objective of this paper is to provide an algebraic estimation strategy that yields an accurate rotor speed estimate for sensorless IM control. The strategy includes an algebraic estimator with single-parameter tuning and inherent filtering action. We propose an EV case study to experimentally evaluate and compare its performance with a typical drive cycle and a dynamic torque load that emulates a small-scale EV power train. The algebraic estimator exhibited a signal-to-noise ratio (SNR) of 43 dB. The closed-loop experiment for the EV case study showed average tracking errors below 1 rad/s and similar performance compared to a well-known sensorless strategy. Our results show that the proposed algebraic estimation strategy works effectively in a nominal speed range for a practical IM sensorless application. The algebraic estimator only requires single-parameter tuning and potentially facilitates IM model updates using a resetting scheme.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics13101937</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adaptation ; Algebra ; Approximation ; Case studies ; Closed loops ; Control systems ; Electric vehicles ; Filtration ; Induction electric motors ; Induction motors ; Parameters ; Powertrain ; Rotor speed ; Signal to noise ratio ; Tracking errors ; Tuning</subject><ispartof>Electronics (Basel), 2024-05, Vol.13 (10), p.1937</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-d35b08c9ac2ba9d9bbc7678c109eac4916e1dd301f8b517970fcc2255447645e3</cites><orcidid>0000-0003-2852-1062 ; 0000-0002-9501-2199 ; 0000-0001-6991-4116</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Neira-García, Jorge</creatorcontrib><creatorcontrib>Beltrán-Pulido, Andrés</creatorcontrib><creatorcontrib>Cortés-Romero, John</creatorcontrib><title>Algebraic Speed Estimation for Sensorless Induction Motor Control: Insights from an Electric Vehicle Drive Cycle</title><title>Electronics (Basel)</title><description>Induction motors (IMs) must meet high reliability and safety standards in mission-critical applications, such as electric vehicles (EVs), where sensorless control strategies are fundamental. However, sensorless rotor speed estimation demands improvements to overcome filtering distortions, tuning complexities, and sensitivity to IM model mismatch. Algebraic methods offer inherent filtering capabilities and design flexibility to address these challenges without introducing additional dynamics into the control system. The objective of this paper is to provide an algebraic estimation strategy that yields an accurate rotor speed estimate for sensorless IM control. The strategy includes an algebraic estimator with single-parameter tuning and inherent filtering action. We propose an EV case study to experimentally evaluate and compare its performance with a typical drive cycle and a dynamic torque load that emulates a small-scale EV power train. The algebraic estimator exhibited a signal-to-noise ratio (SNR) of 43 dB. The closed-loop experiment for the EV case study showed average tracking errors below 1 rad/s and similar performance compared to a well-known sensorless strategy. Our results show that the proposed algebraic estimation strategy works effectively in a nominal speed range for a practical IM sensorless application. The algebraic estimator only requires single-parameter tuning and potentially facilitates IM model updates using a resetting scheme.</description><subject>Adaptation</subject><subject>Algebra</subject><subject>Approximation</subject><subject>Case studies</subject><subject>Closed loops</subject><subject>Control systems</subject><subject>Electric vehicles</subject><subject>Filtration</subject><subject>Induction electric motors</subject><subject>Induction motors</subject><subject>Parameters</subject><subject>Powertrain</subject><subject>Rotor speed</subject><subject>Signal to noise ratio</subject><subject>Tracking errors</subject><subject>Tuning</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptUcFOwzAMjRBITLAv4BKJc0fSpEvDbSoDJg1xGHCt0tTdMnVJSTKk_T1h48AB--AnP9vPshG6oWTCmCR30IOO3lmjA2WUUMnEGRrlRMhM5jI__4Mv0TiELUkmKSsZGaFh1q-h8cpovBoAWjwP0exUNM7iznm8Ahuc7yEEvLDtXh-JFxcTVTmbZPv7RASz3sSAO-92WFk8P26URn7Axuge8IM3X4CrQ8LX6KJTfYDxb7xC74_zt-o5W74-LarZMtOM0pi1rGhIqaXSeaNkK5tGi6koNSUSlOaSToG2LSO0K5uCCilIp3WeFwXnYsoLYFfo9jR38O5zDyHWW7f3NknWjBSSMyG4SFWTU9Va9VAb27nolU7ews5oZ6EzKT8TsuCEUU5TAzs1aO9C8NDVg0_38oeakvrnHfU_72Df1AaBNA</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Neira-García, Jorge</creator><creator>Beltrán-Pulido, Andrés</creator><creator>Cortés-Romero, John</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-2852-1062</orcidid><orcidid>https://orcid.org/0000-0002-9501-2199</orcidid><orcidid>https://orcid.org/0000-0001-6991-4116</orcidid></search><sort><creationdate>20240501</creationdate><title>Algebraic Speed Estimation for Sensorless Induction Motor Control: Insights from an Electric Vehicle Drive Cycle</title><author>Neira-García, Jorge ; Beltrán-Pulido, Andrés ; Cortés-Romero, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-d35b08c9ac2ba9d9bbc7678c109eac4916e1dd301f8b517970fcc2255447645e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation</topic><topic>Algebra</topic><topic>Approximation</topic><topic>Case studies</topic><topic>Closed loops</topic><topic>Control systems</topic><topic>Electric vehicles</topic><topic>Filtration</topic><topic>Induction electric motors</topic><topic>Induction motors</topic><topic>Parameters</topic><topic>Powertrain</topic><topic>Rotor speed</topic><topic>Signal to noise ratio</topic><topic>Tracking errors</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neira-García, Jorge</creatorcontrib><creatorcontrib>Beltrán-Pulido, Andrés</creatorcontrib><creatorcontrib>Cortés-Romero, John</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neira-García, Jorge</au><au>Beltrán-Pulido, Andrés</au><au>Cortés-Romero, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algebraic Speed Estimation for Sensorless Induction Motor Control: Insights from an Electric Vehicle Drive Cycle</atitle><jtitle>Electronics (Basel)</jtitle><date>2024-05-01</date><risdate>2024</risdate><volume>13</volume><issue>10</issue><spage>1937</spage><pages>1937-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Induction motors (IMs) must meet high reliability and safety standards in mission-critical applications, such as electric vehicles (EVs), where sensorless control strategies are fundamental. However, sensorless rotor speed estimation demands improvements to overcome filtering distortions, tuning complexities, and sensitivity to IM model mismatch. Algebraic methods offer inherent filtering capabilities and design flexibility to address these challenges without introducing additional dynamics into the control system. The objective of this paper is to provide an algebraic estimation strategy that yields an accurate rotor speed estimate for sensorless IM control. The strategy includes an algebraic estimator with single-parameter tuning and inherent filtering action. We propose an EV case study to experimentally evaluate and compare its performance with a typical drive cycle and a dynamic torque load that emulates a small-scale EV power train. The algebraic estimator exhibited a signal-to-noise ratio (SNR) of 43 dB. The closed-loop experiment for the EV case study showed average tracking errors below 1 rad/s and similar performance compared to a well-known sensorless strategy. Our results show that the proposed algebraic estimation strategy works effectively in a nominal speed range for a practical IM sensorless application. The algebraic estimator only requires single-parameter tuning and potentially facilitates IM model updates using a resetting scheme.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics13101937</doi><orcidid>https://orcid.org/0000-0003-2852-1062</orcidid><orcidid>https://orcid.org/0000-0002-9501-2199</orcidid><orcidid>https://orcid.org/0000-0001-6991-4116</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2024-05, Vol.13 (10), p.1937
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_3059437747
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Adaptation
Algebra
Approximation
Case studies
Closed loops
Control systems
Electric vehicles
Filtration
Induction electric motors
Induction motors
Parameters
Powertrain
Rotor speed
Signal to noise ratio
Tracking errors
Tuning
title Algebraic Speed Estimation for Sensorless Induction Motor Control: Insights from an Electric Vehicle Drive Cycle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A57%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algebraic%20Speed%20Estimation%20for%20Sensorless%20Induction%20Motor%20Control:%20Insights%20from%20an%20Electric%20Vehicle%20Drive%20Cycle&rft.jtitle=Electronics%20(Basel)&rft.au=Neira-Garc%C3%ADa,%20Jorge&rft.date=2024-05-01&rft.volume=13&rft.issue=10&rft.spage=1937&rft.pages=1937-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics13101937&rft_dat=%3Cgale_proqu%3EA795403141%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3059437747&rft_id=info:pmid/&rft_galeid=A795403141&rfr_iscdi=true