Determination of Fe3O4 Content and Total Nonhydraulic Minerals in Steel Slag
The nonhydraulic minerals (Fe3O4, RO phase, Fe) in slag are important indicators for evaluating the pozzolanic activity and detecting the quality of the slag activation processing technology. Fe3O4 is an important characteristic mineral among the nonhydraulic minerals. In order to accurately assess...
Gespeichert in:
Veröffentlicht in: | Coatings (Basel) 2024-05, Vol.14 (5), p.593 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 593 |
container_title | Coatings (Basel) |
container_volume | 14 |
creator | Hou, Xinkai Sun, Jiaoyang Wang, Xiangfeng Fan, Xiaoqi Wang, Ying |
description | The nonhydraulic minerals (Fe3O4, RO phase, Fe) in slag are important indicators for evaluating the pozzolanic activity and detecting the quality of the slag activation processing technology. Fe3O4 is an important characteristic mineral among the nonhydraulic minerals. In order to accurately assess the pozzolanic activity of steel slag powder and to monitor the quality of the activation process of steel slag powder for separate nonhydraulic minerals, it is imperative to precisely determine the nonhydraulic mineral content within the steel slag. Further refinement and enhancement are required for both the HNO3 dissolution method used in determining Fe3O4 content in steel slag, as well as for the EDTA-DEA-TEA (ethylenediamine tetraacetate sodium-diethylamine-triethanolamine) dissolution method employed in determining total nonhydraulic minerals, due to potential deviations caused by challenging impurity separations. The results show that the content of Fe3O4 is determined by 10%HNO3-20%NaOH-chemical analysis method, which solves the problem that the impurities of refractory materials (quartz, corundum, mullite) and amorphous phase affects the content determination in HNO3 dissolution method. The total amount of nonhydraulic minerals (Fe3O4, RO phase, Fe) was determined by the EDTA-NaOH-TEA dissolution method, which solved the problem that the incomplete dissolution of C2F in the EDTA-DEA-TEA dissolution method affected the content determination. The maximum error between the content determination value and the theoretical calculation value of the two methods is less than 0.50%. The improved Fe3O4 and total nonhydraulic mineral quantification methods are feasible and reliable. |
doi_str_mv | 10.3390/coatings14050593 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3059408538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3059408538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c266t-7b4c96a93941835f16cfac31f3db6a15893105819fc0b5aed0be28509f1331253</originalsourceid><addsrcrecordid>eNpdUD1PwzAQtRBIVKU7oyXmgC8Xp_GICqVIgQ4tc-Q4dkmV2sV2hv57jMqAuOVOp6f3RcgtsHtEwR6Uk7G3uwAF44wLvCCTnM1FVhaQX_65r8kshD1LIwArEBNSP-mo_aG3icBZ6gxdalwXdOFs1DZSaTu6dVEO9N3Zz1Pn5Tj0ir71Vns5BNpbuolaD3QzyN0NuTLpqWe_e0o-ls_bxSqr1y-vi8c6U3lZxmzeFkqUUqAooEJuoFRGKgSDXVtK4JVAYDzZM4q1XOqOtTqvOBMGECHnOCV3Z96jd1-jDrHZu9HbJNlgil-wimOVUOyMUt6F4LVpjr4_SH9qgDU_tTX_a8NvVxBgQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3059408538</pqid></control><display><type>article</type><title>Determination of Fe3O4 Content and Total Nonhydraulic Minerals in Steel Slag</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Hou, Xinkai ; Sun, Jiaoyang ; Wang, Xiangfeng ; Fan, Xiaoqi ; Wang, Ying</creator><creatorcontrib>Hou, Xinkai ; Sun, Jiaoyang ; Wang, Xiangfeng ; Fan, Xiaoqi ; Wang, Ying</creatorcontrib><description>The nonhydraulic minerals (Fe3O4, RO phase, Fe) in slag are important indicators for evaluating the pozzolanic activity and detecting the quality of the slag activation processing technology. Fe3O4 is an important characteristic mineral among the nonhydraulic minerals. In order to accurately assess the pozzolanic activity of steel slag powder and to monitor the quality of the activation process of steel slag powder for separate nonhydraulic minerals, it is imperative to precisely determine the nonhydraulic mineral content within the steel slag. Further refinement and enhancement are required for both the HNO3 dissolution method used in determining Fe3O4 content in steel slag, as well as for the EDTA-DEA-TEA (ethylenediamine tetraacetate sodium-diethylamine-triethanolamine) dissolution method employed in determining total nonhydraulic minerals, due to potential deviations caused by challenging impurity separations. The results show that the content of Fe3O4 is determined by 10%HNO3-20%NaOH-chemical analysis method, which solves the problem that the impurities of refractory materials (quartz, corundum, mullite) and amorphous phase affects the content determination in HNO3 dissolution method. The total amount of nonhydraulic minerals (Fe3O4, RO phase, Fe) was determined by the EDTA-NaOH-TEA dissolution method, which solved the problem that the incomplete dissolution of C2F in the EDTA-DEA-TEA dissolution method affected the content determination. The maximum error between the content determination value and the theoretical calculation value of the two methods is less than 0.50%. The improved Fe3O4 and total nonhydraulic mineral quantification methods are feasible and reliable.</description><identifier>ISSN: 2079-6412</identifier><identifier>EISSN: 2079-6412</identifier><identifier>DOI: 10.3390/coatings14050593</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Amorphous materials ; Analytical chemistry ; Cement ; Chemical analysis ; Chemical elements ; Corundum ; Dissolution ; Ethylenediamine ; Ethylenediaminetetraacetic acids ; Impurities ; Iron ; Iron oxides ; Metal oxides ; Metal powders ; Methods ; Minerals ; Mullite ; Particle size ; Raw materials ; Refractory materials ; Slag ; Sodium hydroxide ; Steel production ; Triethanolamine</subject><ispartof>Coatings (Basel), 2024-05, Vol.14 (5), p.593</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c266t-7b4c96a93941835f16cfac31f3db6a15893105819fc0b5aed0be28509f1331253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Hou, Xinkai</creatorcontrib><creatorcontrib>Sun, Jiaoyang</creatorcontrib><creatorcontrib>Wang, Xiangfeng</creatorcontrib><creatorcontrib>Fan, Xiaoqi</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><title>Determination of Fe3O4 Content and Total Nonhydraulic Minerals in Steel Slag</title><title>Coatings (Basel)</title><description>The nonhydraulic minerals (Fe3O4, RO phase, Fe) in slag are important indicators for evaluating the pozzolanic activity and detecting the quality of the slag activation processing technology. Fe3O4 is an important characteristic mineral among the nonhydraulic minerals. In order to accurately assess the pozzolanic activity of steel slag powder and to monitor the quality of the activation process of steel slag powder for separate nonhydraulic minerals, it is imperative to precisely determine the nonhydraulic mineral content within the steel slag. Further refinement and enhancement are required for both the HNO3 dissolution method used in determining Fe3O4 content in steel slag, as well as for the EDTA-DEA-TEA (ethylenediamine tetraacetate sodium-diethylamine-triethanolamine) dissolution method employed in determining total nonhydraulic minerals, due to potential deviations caused by challenging impurity separations. The results show that the content of Fe3O4 is determined by 10%HNO3-20%NaOH-chemical analysis method, which solves the problem that the impurities of refractory materials (quartz, corundum, mullite) and amorphous phase affects the content determination in HNO3 dissolution method. The total amount of nonhydraulic minerals (Fe3O4, RO phase, Fe) was determined by the EDTA-NaOH-TEA dissolution method, which solved the problem that the incomplete dissolution of C2F in the EDTA-DEA-TEA dissolution method affected the content determination. The maximum error between the content determination value and the theoretical calculation value of the two methods is less than 0.50%. The improved Fe3O4 and total nonhydraulic mineral quantification methods are feasible and reliable.</description><subject>Amorphous materials</subject><subject>Analytical chemistry</subject><subject>Cement</subject><subject>Chemical analysis</subject><subject>Chemical elements</subject><subject>Corundum</subject><subject>Dissolution</subject><subject>Ethylenediamine</subject><subject>Ethylenediaminetetraacetic acids</subject><subject>Impurities</subject><subject>Iron</subject><subject>Iron oxides</subject><subject>Metal oxides</subject><subject>Metal powders</subject><subject>Methods</subject><subject>Minerals</subject><subject>Mullite</subject><subject>Particle size</subject><subject>Raw materials</subject><subject>Refractory materials</subject><subject>Slag</subject><subject>Sodium hydroxide</subject><subject>Steel production</subject><subject>Triethanolamine</subject><issn>2079-6412</issn><issn>2079-6412</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdUD1PwzAQtRBIVKU7oyXmgC8Xp_GICqVIgQ4tc-Q4dkmV2sV2hv57jMqAuOVOp6f3RcgtsHtEwR6Uk7G3uwAF44wLvCCTnM1FVhaQX_65r8kshD1LIwArEBNSP-mo_aG3icBZ6gxdalwXdOFs1DZSaTu6dVEO9N3Zz1Pn5Tj0ir71Vns5BNpbuolaD3QzyN0NuTLpqWe_e0o-ls_bxSqr1y-vi8c6U3lZxmzeFkqUUqAooEJuoFRGKgSDXVtK4JVAYDzZM4q1XOqOtTqvOBMGECHnOCV3Z96jd1-jDrHZu9HbJNlgil-wimOVUOyMUt6F4LVpjr4_SH9qgDU_tTX_a8NvVxBgQQ</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Hou, Xinkai</creator><creator>Sun, Jiaoyang</creator><creator>Wang, Xiangfeng</creator><creator>Fan, Xiaoqi</creator><creator>Wang, Ying</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20240501</creationdate><title>Determination of Fe3O4 Content and Total Nonhydraulic Minerals in Steel Slag</title><author>Hou, Xinkai ; Sun, Jiaoyang ; Wang, Xiangfeng ; Fan, Xiaoqi ; Wang, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c266t-7b4c96a93941835f16cfac31f3db6a15893105819fc0b5aed0be28509f1331253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Amorphous materials</topic><topic>Analytical chemistry</topic><topic>Cement</topic><topic>Chemical analysis</topic><topic>Chemical elements</topic><topic>Corundum</topic><topic>Dissolution</topic><topic>Ethylenediamine</topic><topic>Ethylenediaminetetraacetic acids</topic><topic>Impurities</topic><topic>Iron</topic><topic>Iron oxides</topic><topic>Metal oxides</topic><topic>Metal powders</topic><topic>Methods</topic><topic>Minerals</topic><topic>Mullite</topic><topic>Particle size</topic><topic>Raw materials</topic><topic>Refractory materials</topic><topic>Slag</topic><topic>Sodium hydroxide</topic><topic>Steel production</topic><topic>Triethanolamine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Xinkai</creatorcontrib><creatorcontrib>Sun, Jiaoyang</creatorcontrib><creatorcontrib>Wang, Xiangfeng</creatorcontrib><creatorcontrib>Fan, Xiaoqi</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Coatings (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Xinkai</au><au>Sun, Jiaoyang</au><au>Wang, Xiangfeng</au><au>Fan, Xiaoqi</au><au>Wang, Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of Fe3O4 Content and Total Nonhydraulic Minerals in Steel Slag</atitle><jtitle>Coatings (Basel)</jtitle><date>2024-05-01</date><risdate>2024</risdate><volume>14</volume><issue>5</issue><spage>593</spage><pages>593-</pages><issn>2079-6412</issn><eissn>2079-6412</eissn><abstract>The nonhydraulic minerals (Fe3O4, RO phase, Fe) in slag are important indicators for evaluating the pozzolanic activity and detecting the quality of the slag activation processing technology. Fe3O4 is an important characteristic mineral among the nonhydraulic minerals. In order to accurately assess the pozzolanic activity of steel slag powder and to monitor the quality of the activation process of steel slag powder for separate nonhydraulic minerals, it is imperative to precisely determine the nonhydraulic mineral content within the steel slag. Further refinement and enhancement are required for both the HNO3 dissolution method used in determining Fe3O4 content in steel slag, as well as for the EDTA-DEA-TEA (ethylenediamine tetraacetate sodium-diethylamine-triethanolamine) dissolution method employed in determining total nonhydraulic minerals, due to potential deviations caused by challenging impurity separations. The results show that the content of Fe3O4 is determined by 10%HNO3-20%NaOH-chemical analysis method, which solves the problem that the impurities of refractory materials (quartz, corundum, mullite) and amorphous phase affects the content determination in HNO3 dissolution method. The total amount of nonhydraulic minerals (Fe3O4, RO phase, Fe) was determined by the EDTA-NaOH-TEA dissolution method, which solved the problem that the incomplete dissolution of C2F in the EDTA-DEA-TEA dissolution method affected the content determination. The maximum error between the content determination value and the theoretical calculation value of the two methods is less than 0.50%. The improved Fe3O4 and total nonhydraulic mineral quantification methods are feasible and reliable.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/coatings14050593</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-6412 |
ispartof | Coatings (Basel), 2024-05, Vol.14 (5), p.593 |
issn | 2079-6412 2079-6412 |
language | eng |
recordid | cdi_proquest_journals_3059408538 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Amorphous materials Analytical chemistry Cement Chemical analysis Chemical elements Corundum Dissolution Ethylenediamine Ethylenediaminetetraacetic acids Impurities Iron Iron oxides Metal oxides Metal powders Methods Minerals Mullite Particle size Raw materials Refractory materials Slag Sodium hydroxide Steel production Triethanolamine |
title | Determination of Fe3O4 Content and Total Nonhydraulic Minerals in Steel Slag |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T02%3A09%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20Fe3O4%20Content%20and%20Total%20Nonhydraulic%20Minerals%20in%20Steel%20Slag&rft.jtitle=Coatings%20(Basel)&rft.au=Hou,%20Xinkai&rft.date=2024-05-01&rft.volume=14&rft.issue=5&rft.spage=593&rft.pages=593-&rft.issn=2079-6412&rft.eissn=2079-6412&rft_id=info:doi/10.3390/coatings14050593&rft_dat=%3Cproquest_cross%3E3059408538%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3059408538&rft_id=info:pmid/&rfr_iscdi=true |