Multi-order attribute network representation learning via constructing hierarchical graphs

Network representation learning (NRL) is widely used for such tasks as link prediction, node classification in network analysis. For NRL, it is a challenge in effectively fusing structural features and attribute information. To address the problem, this paper proposes a multi-order attribute network...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of machine learning and cybernetics 2024-06, Vol.15 (6), p.2095-2110
Hauptverfasser: Zhou, Mingqiang, Han, Qizhi, Liu, Dan, Wu, Quanwang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2110
container_issue 6
container_start_page 2095
container_title International journal of machine learning and cybernetics
container_volume 15
creator Zhou, Mingqiang
Han, Qizhi
Liu, Dan
Wu, Quanwang
description Network representation learning (NRL) is widely used for such tasks as link prediction, node classification in network analysis. For NRL, it is a challenge in effectively fusing structural features and attribute information. To address the problem, this paper proposes a multi-order attribute network representation learning model via constructing hierarchical graphs (Multi-NRL). Firstly, the model constructs a series of hierarchical graphs on the original network through structure merging and attribute merging, which contain multi-order structural feature and attribute information from detailed to sketchy. Then, it performs hierarchical network representation on these graphs. Finally, it gains the final network representation through concatenating of the hierarchical network representation. Experimental results show Multi-NRL outperforms the best baseline by up-to 9.6% improvement in link prediction, and 13.9% in node classification with six real-world networks, which demonstrates the effectiveness of our model.
doi_str_mv 10.1007/s13042-023-02018-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3059398202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3059398202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-3b921040cd2c9f745c22d667d964ea22b494e05bbfb6159cf0934727270b31b23</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhhdRsNT-AU8LnlcnyX7lKMUvqHhREC8hyWbb1DW7TrJa_72pFb1phjDD8LzvwJskxwROCUB15gmDnGZAWfxA6myzl0xIXdZZDfXj_s9ckcNk5v0a4iuBMaCT5Ol27ILNemwMpjIEtGoMJnUmvPf4nKIZ0Hjjggy2d2lnJDrrlumblanunQ846rBdrKxBiXpltezSJcph5Y-Sg1Z23sy--zR5uLy4n19ni7urm_n5ItOU1yFjilMCOeiGat5WeaEpbcqyaniZG0mpynluoFCqVSUpuG6Bs7yisUAxoiibJic73wH719H4INb9iC6eFAwKznhN4V-KAC9oHSm6ozT23qNpxYD2ReKHICC2YYtd2CI6iq-wxSaK2E7kI-yWBn-t_1B9AvZegoM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3059109528</pqid></control><display><type>article</type><title>Multi-order attribute network representation learning via constructing hierarchical graphs</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhou, Mingqiang ; Han, Qizhi ; Liu, Dan ; Wu, Quanwang</creator><creatorcontrib>Zhou, Mingqiang ; Han, Qizhi ; Liu, Dan ; Wu, Quanwang</creatorcontrib><description>Network representation learning (NRL) is widely used for such tasks as link prediction, node classification in network analysis. For NRL, it is a challenge in effectively fusing structural features and attribute information. To address the problem, this paper proposes a multi-order attribute network representation learning model via constructing hierarchical graphs (Multi-NRL). Firstly, the model constructs a series of hierarchical graphs on the original network through structure merging and attribute merging, which contain multi-order structural feature and attribute information from detailed to sketchy. Then, it performs hierarchical network representation on these graphs. Finally, it gains the final network representation through concatenating of the hierarchical network representation. Experimental results show Multi-NRL outperforms the best baseline by up-to 9.6% improvement in link prediction, and 13.9% in node classification with six real-world networks, which demonstrates the effectiveness of our model.</description><identifier>ISSN: 1868-8071</identifier><identifier>EISSN: 1868-808X</identifier><identifier>DOI: 10.1007/s13042-023-02018-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Classification ; Complex Systems ; Computational Intelligence ; Control ; Engineering ; Graphical representations ; Graphs ; Learning ; Mechatronics ; Network analysis ; Original Article ; Pattern Recognition ; Robotics ; Social networks ; Systems Biology</subject><ispartof>International journal of machine learning and cybernetics, 2024-06, Vol.15 (6), p.2095-2110</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c298t-3b921040cd2c9f745c22d667d964ea22b494e05bbfb6159cf0934727270b31b23</cites><orcidid>0000-0003-3217-9503</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13042-023-02018-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13042-023-02018-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhou, Mingqiang</creatorcontrib><creatorcontrib>Han, Qizhi</creatorcontrib><creatorcontrib>Liu, Dan</creatorcontrib><creatorcontrib>Wu, Quanwang</creatorcontrib><title>Multi-order attribute network representation learning via constructing hierarchical graphs</title><title>International journal of machine learning and cybernetics</title><addtitle>Int. J. Mach. Learn. &amp; Cyber</addtitle><description>Network representation learning (NRL) is widely used for such tasks as link prediction, node classification in network analysis. For NRL, it is a challenge in effectively fusing structural features and attribute information. To address the problem, this paper proposes a multi-order attribute network representation learning model via constructing hierarchical graphs (Multi-NRL). Firstly, the model constructs a series of hierarchical graphs on the original network through structure merging and attribute merging, which contain multi-order structural feature and attribute information from detailed to sketchy. Then, it performs hierarchical network representation on these graphs. Finally, it gains the final network representation through concatenating of the hierarchical network representation. Experimental results show Multi-NRL outperforms the best baseline by up-to 9.6% improvement in link prediction, and 13.9% in node classification with six real-world networks, which demonstrates the effectiveness of our model.</description><subject>Artificial Intelligence</subject><subject>Classification</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Engineering</subject><subject>Graphical representations</subject><subject>Graphs</subject><subject>Learning</subject><subject>Mechatronics</subject><subject>Network analysis</subject><subject>Original Article</subject><subject>Pattern Recognition</subject><subject>Robotics</subject><subject>Social networks</subject><subject>Systems Biology</subject><issn>1868-8071</issn><issn>1868-808X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhhdRsNT-AU8LnlcnyX7lKMUvqHhREC8hyWbb1DW7TrJa_72pFb1phjDD8LzvwJskxwROCUB15gmDnGZAWfxA6myzl0xIXdZZDfXj_s9ckcNk5v0a4iuBMaCT5Ol27ILNemwMpjIEtGoMJnUmvPf4nKIZ0Hjjggy2d2lnJDrrlumblanunQ846rBdrKxBiXpltezSJcph5Y-Sg1Z23sy--zR5uLy4n19ni7urm_n5ItOU1yFjilMCOeiGat5WeaEpbcqyaniZG0mpynluoFCqVSUpuG6Bs7yisUAxoiibJic73wH719H4INb9iC6eFAwKznhN4V-KAC9oHSm6ozT23qNpxYD2ReKHICC2YYtd2CI6iq-wxSaK2E7kI-yWBn-t_1B9AvZegoM</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Zhou, Mingqiang</creator><creator>Han, Qizhi</creator><creator>Liu, Dan</creator><creator>Wu, Quanwang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0003-3217-9503</orcidid></search><sort><creationdate>20240601</creationdate><title>Multi-order attribute network representation learning via constructing hierarchical graphs</title><author>Zhou, Mingqiang ; Han, Qizhi ; Liu, Dan ; Wu, Quanwang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-3b921040cd2c9f745c22d667d964ea22b494e05bbfb6159cf0934727270b31b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Classification</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Engineering</topic><topic>Graphical representations</topic><topic>Graphs</topic><topic>Learning</topic><topic>Mechatronics</topic><topic>Network analysis</topic><topic>Original Article</topic><topic>Pattern Recognition</topic><topic>Robotics</topic><topic>Social networks</topic><topic>Systems Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Mingqiang</creatorcontrib><creatorcontrib>Han, Qizhi</creatorcontrib><creatorcontrib>Liu, Dan</creatorcontrib><creatorcontrib>Wu, Quanwang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>International journal of machine learning and cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Mingqiang</au><au>Han, Qizhi</au><au>Liu, Dan</au><au>Wu, Quanwang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-order attribute network representation learning via constructing hierarchical graphs</atitle><jtitle>International journal of machine learning and cybernetics</jtitle><stitle>Int. J. Mach. Learn. &amp; Cyber</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>15</volume><issue>6</issue><spage>2095</spage><epage>2110</epage><pages>2095-2110</pages><issn>1868-8071</issn><eissn>1868-808X</eissn><abstract>Network representation learning (NRL) is widely used for such tasks as link prediction, node classification in network analysis. For NRL, it is a challenge in effectively fusing structural features and attribute information. To address the problem, this paper proposes a multi-order attribute network representation learning model via constructing hierarchical graphs (Multi-NRL). Firstly, the model constructs a series of hierarchical graphs on the original network through structure merging and attribute merging, which contain multi-order structural feature and attribute information from detailed to sketchy. Then, it performs hierarchical network representation on these graphs. Finally, it gains the final network representation through concatenating of the hierarchical network representation. Experimental results show Multi-NRL outperforms the best baseline by up-to 9.6% improvement in link prediction, and 13.9% in node classification with six real-world networks, which demonstrates the effectiveness of our model.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13042-023-02018-x</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-3217-9503</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1868-8071
ispartof International journal of machine learning and cybernetics, 2024-06, Vol.15 (6), p.2095-2110
issn 1868-8071
1868-808X
language eng
recordid cdi_proquest_journals_3059398202
source SpringerLink Journals - AutoHoldings
subjects Artificial Intelligence
Classification
Complex Systems
Computational Intelligence
Control
Engineering
Graphical representations
Graphs
Learning
Mechatronics
Network analysis
Original Article
Pattern Recognition
Robotics
Social networks
Systems Biology
title Multi-order attribute network representation learning via constructing hierarchical graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T23%3A22%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-order%20attribute%20network%20representation%20learning%20via%20constructing%20hierarchical%20graphs&rft.jtitle=International%20journal%20of%20machine%20learning%20and%20cybernetics&rft.au=Zhou,%20Mingqiang&rft.date=2024-06-01&rft.volume=15&rft.issue=6&rft.spage=2095&rft.epage=2110&rft.pages=2095-2110&rft.issn=1868-8071&rft.eissn=1868-808X&rft_id=info:doi/10.1007/s13042-023-02018-x&rft_dat=%3Cproquest_cross%3E3059398202%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3059109528&rft_id=info:pmid/&rfr_iscdi=true