Beating the news using social media: the case study of American Idol

We present a contribution to the debate on the predictability of social events using big data analytics. We focus on the elimination of contestants in the American Idol TV shows as an example of a well defined electoral phenomenon that each week draws millions of votes in the USA. This event can be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EPJ data science 2012-12, Vol.1 (1), p.8, Article 8
Hauptverfasser: Ciulla, Fabio, Mocanu, Delia, Baronchelli, Andrea, Gonçalves, Bruno, Perra, Nicola, Vespignani, Alessandro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 8
container_title EPJ data science
container_volume 1
creator Ciulla, Fabio
Mocanu, Delia
Baronchelli, Andrea
Gonçalves, Bruno
Perra, Nicola
Vespignani, Alessandro
description We present a contribution to the debate on the predictability of social events using big data analytics. We focus on the elimination of contestants in the American Idol TV shows as an example of a well defined electoral phenomenon that each week draws millions of votes in the USA. This event can be considered as basic test in a simplified environment to assess the predictive power of Twitter signals. We provide evidence that Twitter activity during the time span defined by the TV show airing and the voting period following it correlates with the contestants ranking and allows the anticipation of the voting outcome. Twitter data from the show and the voting period of the season finale have been analyzed to attempt the winner prediction ahead of the airing of the official result. We also show that the fraction of tweets that contain geolocation information allows us to map the fanbase of each contestant, both within the US and abroad, showing that strong regional polarizations occur. The geolocalized data are crucial for the correct prediction of the final outcome of the show, pointing out the importance of considering information beyond the aggregated Twitter signal. Although American Idol voting is just a minimal and simplified version of complex societal phenomena such as political elections, this work shows that the volume of information available in online systems permits the real time gathering of quantitative indicators that may be able to anticipate the future unfolding of opinion formation events.
doi_str_mv 10.1140/epjds8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3059227159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3059227159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-6b2963432f15728cfd10db1f5c501fb7f2e218f8efa7ba563f9c9edd87c036223</originalsourceid><addsrcrecordid>eNpd0EtLAzEQB_AgCpZaP0NA0NNqJmn24a3WV6HgRc9LNpnULfuomV2k396tKyieZob5MQN_xs5BXAPMxQ3uto7SIzaRkKkIQCbHf_pTNiPaCiFASa3ieMLu79B0ZbPh3TvyBj-J93QYqbWlqXiNrjS330trCDl1vdvz1vNFjaG0puEr11Zn7MSbinD2U6fs7fHhdfkcrV-eVsvFOrIKdBfFhcxiNVfSg05kar0D4Qrw2moBvki8RAmpT9GbpDA6Vj6zGTqXJlaoWEo1ZRfj3V1oP3qkLt-2fWiGl7kSOpMyAZ0N6nJUNrREAX2-C2Vtwj4HkR9CyseQBng1QhpAs8Hwe-6f_ALScWZq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3059227159</pqid></control><display><type>article</type><title>Beating the news using social media: the case study of American Idol</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Ciulla, Fabio ; Mocanu, Delia ; Baronchelli, Andrea ; Gonçalves, Bruno ; Perra, Nicola ; Vespignani, Alessandro</creator><creatorcontrib>Ciulla, Fabio ; Mocanu, Delia ; Baronchelli, Andrea ; Gonçalves, Bruno ; Perra, Nicola ; Vespignani, Alessandro</creatorcontrib><description>We present a contribution to the debate on the predictability of social events using big data analytics. We focus on the elimination of contestants in the American Idol TV shows as an example of a well defined electoral phenomenon that each week draws millions of votes in the USA. This event can be considered as basic test in a simplified environment to assess the predictive power of Twitter signals. We provide evidence that Twitter activity during the time span defined by the TV show airing and the voting period following it correlates with the contestants ranking and allows the anticipation of the voting outcome. Twitter data from the show and the voting period of the season finale have been analyzed to attempt the winner prediction ahead of the airing of the official result. We also show that the fraction of tweets that contain geolocation information allows us to map the fanbase of each contestant, both within the US and abroad, showing that strong regional polarizations occur. The geolocalized data are crucial for the correct prediction of the final outcome of the show, pointing out the importance of considering information beyond the aggregated Twitter signal. Although American Idol voting is just a minimal and simplified version of complex societal phenomena such as political elections, this work shows that the volume of information available in online systems permits the real time gathering of quantitative indicators that may be able to anticipate the future unfolding of opinion formation events.</description><identifier>ISSN: 2193-1127</identifier><identifier>EISSN: 2193-1127</identifier><identifier>DOI: 10.1140/epjds8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Big Data ; Complexity ; Computer Appl. in Social and Behavioral Sciences ; Computer Science ; Data-driven Science ; Digital media ; Modeling and Theory Building ; On-line systems ; Regular Article ; Social networks ; Television programs ; Voting</subject><ispartof>EPJ data science, 2012-12, Vol.1 (1), p.8, Article 8</ispartof><rights>Ciulla et al.; licensee Springer 2012. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Ciulla et al.; licensee Springer 2012. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This work is published under http://creativecommons.org/licenses/by/2.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-6b2963432f15728cfd10db1f5c501fb7f2e218f8efa7ba563f9c9edd87c036223</citedby><cites>FETCH-LOGICAL-c315t-6b2963432f15728cfd10db1f5c501fb7f2e218f8efa7ba563f9c9edd87c036223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjds8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1140/epjds8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,27924,27925,41120,41488,42189,42557,51319,51576</link.rule.ids></links><search><creatorcontrib>Ciulla, Fabio</creatorcontrib><creatorcontrib>Mocanu, Delia</creatorcontrib><creatorcontrib>Baronchelli, Andrea</creatorcontrib><creatorcontrib>Gonçalves, Bruno</creatorcontrib><creatorcontrib>Perra, Nicola</creatorcontrib><creatorcontrib>Vespignani, Alessandro</creatorcontrib><title>Beating the news using social media: the case study of American Idol</title><title>EPJ data science</title><addtitle>EPJ Data Sci</addtitle><description>We present a contribution to the debate on the predictability of social events using big data analytics. We focus on the elimination of contestants in the American Idol TV shows as an example of a well defined electoral phenomenon that each week draws millions of votes in the USA. This event can be considered as basic test in a simplified environment to assess the predictive power of Twitter signals. We provide evidence that Twitter activity during the time span defined by the TV show airing and the voting period following it correlates with the contestants ranking and allows the anticipation of the voting outcome. Twitter data from the show and the voting period of the season finale have been analyzed to attempt the winner prediction ahead of the airing of the official result. We also show that the fraction of tweets that contain geolocation information allows us to map the fanbase of each contestant, both within the US and abroad, showing that strong regional polarizations occur. The geolocalized data are crucial for the correct prediction of the final outcome of the show, pointing out the importance of considering information beyond the aggregated Twitter signal. Although American Idol voting is just a minimal and simplified version of complex societal phenomena such as political elections, this work shows that the volume of information available in online systems permits the real time gathering of quantitative indicators that may be able to anticipate the future unfolding of opinion formation events.</description><subject>Big Data</subject><subject>Complexity</subject><subject>Computer Appl. in Social and Behavioral Sciences</subject><subject>Computer Science</subject><subject>Data-driven Science</subject><subject>Digital media</subject><subject>Modeling and Theory Building</subject><subject>On-line systems</subject><subject>Regular Article</subject><subject>Social networks</subject><subject>Television programs</subject><subject>Voting</subject><issn>2193-1127</issn><issn>2193-1127</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpd0EtLAzEQB_AgCpZaP0NA0NNqJmn24a3WV6HgRc9LNpnULfuomV2k396tKyieZob5MQN_xs5BXAPMxQ3uto7SIzaRkKkIQCbHf_pTNiPaCiFASa3ieMLu79B0ZbPh3TvyBj-J93QYqbWlqXiNrjS330trCDl1vdvz1vNFjaG0puEr11Zn7MSbinD2U6fs7fHhdfkcrV-eVsvFOrIKdBfFhcxiNVfSg05kar0D4Qrw2moBvki8RAmpT9GbpDA6Vj6zGTqXJlaoWEo1ZRfj3V1oP3qkLt-2fWiGl7kSOpMyAZ0N6nJUNrREAX2-C2Vtwj4HkR9CyseQBng1QhpAs8Hwe-6f_ALScWZq</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Ciulla, Fabio</creator><creator>Mocanu, Delia</creator><creator>Baronchelli, Andrea</creator><creator>Gonçalves, Bruno</creator><creator>Perra, Nicola</creator><creator>Vespignani, Alessandro</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope></search><sort><creationdate>20121201</creationdate><title>Beating the news using social media: the case study of American Idol</title><author>Ciulla, Fabio ; Mocanu, Delia ; Baronchelli, Andrea ; Gonçalves, Bruno ; Perra, Nicola ; Vespignani, Alessandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-6b2963432f15728cfd10db1f5c501fb7f2e218f8efa7ba563f9c9edd87c036223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Big Data</topic><topic>Complexity</topic><topic>Computer Appl. in Social and Behavioral Sciences</topic><topic>Computer Science</topic><topic>Data-driven Science</topic><topic>Digital media</topic><topic>Modeling and Theory Building</topic><topic>On-line systems</topic><topic>Regular Article</topic><topic>Social networks</topic><topic>Television programs</topic><topic>Voting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ciulla, Fabio</creatorcontrib><creatorcontrib>Mocanu, Delia</creatorcontrib><creatorcontrib>Baronchelli, Andrea</creatorcontrib><creatorcontrib>Gonçalves, Bruno</creatorcontrib><creatorcontrib>Perra, Nicola</creatorcontrib><creatorcontrib>Vespignani, Alessandro</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><jtitle>EPJ data science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ciulla, Fabio</au><au>Mocanu, Delia</au><au>Baronchelli, Andrea</au><au>Gonçalves, Bruno</au><au>Perra, Nicola</au><au>Vespignani, Alessandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beating the news using social media: the case study of American Idol</atitle><jtitle>EPJ data science</jtitle><stitle>EPJ Data Sci</stitle><date>2012-12-01</date><risdate>2012</risdate><volume>1</volume><issue>1</issue><spage>8</spage><pages>8-</pages><artnum>8</artnum><issn>2193-1127</issn><eissn>2193-1127</eissn><abstract>We present a contribution to the debate on the predictability of social events using big data analytics. We focus on the elimination of contestants in the American Idol TV shows as an example of a well defined electoral phenomenon that each week draws millions of votes in the USA. This event can be considered as basic test in a simplified environment to assess the predictive power of Twitter signals. We provide evidence that Twitter activity during the time span defined by the TV show airing and the voting period following it correlates with the contestants ranking and allows the anticipation of the voting outcome. Twitter data from the show and the voting period of the season finale have been analyzed to attempt the winner prediction ahead of the airing of the official result. We also show that the fraction of tweets that contain geolocation information allows us to map the fanbase of each contestant, both within the US and abroad, showing that strong regional polarizations occur. The geolocalized data are crucial for the correct prediction of the final outcome of the show, pointing out the importance of considering information beyond the aggregated Twitter signal. Although American Idol voting is just a minimal and simplified version of complex societal phenomena such as political elections, this work shows that the volume of information available in online systems permits the real time gathering of quantitative indicators that may be able to anticipate the future unfolding of opinion formation events.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjds8</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2193-1127
ispartof EPJ data science, 2012-12, Vol.1 (1), p.8, Article 8
issn 2193-1127
2193-1127
language eng
recordid cdi_proquest_journals_3059227159
source DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals; SpringerLink Journals - AutoHoldings
subjects Big Data
Complexity
Computer Appl. in Social and Behavioral Sciences
Computer Science
Data-driven Science
Digital media
Modeling and Theory Building
On-line systems
Regular Article
Social networks
Television programs
Voting
title Beating the news using social media: the case study of American Idol
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A10%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beating%20the%20news%20using%20social%20media:%20the%20case%20study%20of%20American%20Idol&rft.jtitle=EPJ%20data%20science&rft.au=Ciulla,%20Fabio&rft.date=2012-12-01&rft.volume=1&rft.issue=1&rft.spage=8&rft.pages=8-&rft.artnum=8&rft.issn=2193-1127&rft.eissn=2193-1127&rft_id=info:doi/10.1140/epjds8&rft_dat=%3Cproquest_cross%3E3059227159%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3059227159&rft_id=info:pmid/&rfr_iscdi=true