Machine learning and trade direction classification: insights from the corporate bond market
Leveraging the availability of a large panel of signed trade data in the corporate bond market, we explore how machine learning methods can be used to improve upon standard trade direction classification methods in markets in general, both with and without pre-trade transparency. Using the signed da...
Gespeichert in:
Veröffentlicht in: | Review of quantitative finance and accounting 2024-07, Vol.63 (1), p.1-36 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 36 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Review of quantitative finance and accounting |
container_volume | 63 |
creator | Fedenia, Mark Ronen, Tavy Nam, Seunghan |
description | Leveraging the availability of a large panel of signed trade data in the corporate bond market, we explore how machine learning methods can be used to improve upon standard trade direction classification methods in markets in general, both with and without pre-trade transparency. Using the signed data set allows us to show how both the trading and information environment at the time of the trade critically affect the accuracy of existing trade classification rules in general and also illustrate the importance of optimizing the feature set in correctly classifying trade direction. These insights extend to the equity market. |
doi_str_mv | 10.1007/s11156-024-01252-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3059115487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3059115487</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-e7419b9ae4832588840e00f292b55517b77371c536d64e71a4d2408d8b3cbba3</originalsourceid><addsrcrecordid>eNp9kEtLAzEQx4MoWB9fwFPA82qySTZZbyK-oOKlBw9CyGZn29Q2qUmK-O1NXaE3T8Mw_8fwQ-iCkitKiLxOlFLRVKTmFaG1qKuvAzShQrJKUtkeoglpy0k14u0YnaS0JKTYhJig9xdjF84DXoGJ3vk5Nr7HOZoecO8i2OyCx3ZlUnKDs2a33mDnk5svcsJDDGucF4BtiJsQTQbchRKwNvED8hk6GswqwfnfPEWzh_vZ3VM1fX18vrudVpY1JFcgOW271gBXrBZKKU6AkKFu604IQWUnJZPUCtb0DQdJDe9rTlSvOma7zrBTdDnGbmL43ELKehm20ZdGzYhoCxmuZFHVo8rGkFKEQW-iK39-a0r0DqIeIeoCUf9C1F_FhEcT2OBd2ltUiWW8EaJI2ChJ5ejnEPft_wT_AB03f7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3059115487</pqid></control><display><type>article</type><title>Machine learning and trade direction classification: insights from the corporate bond market</title><source>SpringerLink (Online service)</source><creator>Fedenia, Mark ; Ronen, Tavy ; Nam, Seunghan</creator><creatorcontrib>Fedenia, Mark ; Ronen, Tavy ; Nam, Seunghan</creatorcontrib><description>Leveraging the availability of a large panel of signed trade data in the corporate bond market, we explore how machine learning methods can be used to improve upon standard trade direction classification methods in markets in general, both with and without pre-trade transparency. Using the signed data set allows us to show how both the trading and information environment at the time of the trade critically affect the accuracy of existing trade classification rules in general and also illustrate the importance of optimizing the feature set in correctly classifying trade direction. These insights extend to the equity market.</description><identifier>ISSN: 0924-865X</identifier><identifier>EISSN: 1573-7179</identifier><identifier>DOI: 10.1007/s11156-024-01252-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accounting/Auditing ; Bond markets ; Classification ; Corporate bonds ; Corporate Finance ; Econometrics ; Economics and Finance ; Finance ; Futures market ; Institutional investments ; Liquidity ; Machine learning ; Operations Research/Decision Theory ; Original Research ; Transparency</subject><ispartof>Review of quantitative finance and accounting, 2024-07, Vol.63 (1), p.1-36</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c360t-e7419b9ae4832588840e00f292b55517b77371c536d64e71a4d2408d8b3cbba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11156-024-01252-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11156-024-01252-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Fedenia, Mark</creatorcontrib><creatorcontrib>Ronen, Tavy</creatorcontrib><creatorcontrib>Nam, Seunghan</creatorcontrib><title>Machine learning and trade direction classification: insights from the corporate bond market</title><title>Review of quantitative finance and accounting</title><addtitle>Rev Quant Finan Acc</addtitle><description>Leveraging the availability of a large panel of signed trade data in the corporate bond market, we explore how machine learning methods can be used to improve upon standard trade direction classification methods in markets in general, both with and without pre-trade transparency. Using the signed data set allows us to show how both the trading and information environment at the time of the trade critically affect the accuracy of existing trade classification rules in general and also illustrate the importance of optimizing the feature set in correctly classifying trade direction. These insights extend to the equity market.</description><subject>Accounting/Auditing</subject><subject>Bond markets</subject><subject>Classification</subject><subject>Corporate bonds</subject><subject>Corporate Finance</subject><subject>Econometrics</subject><subject>Economics and Finance</subject><subject>Finance</subject><subject>Futures market</subject><subject>Institutional investments</subject><subject>Liquidity</subject><subject>Machine learning</subject><subject>Operations Research/Decision Theory</subject><subject>Original Research</subject><subject>Transparency</subject><issn>0924-865X</issn><issn>1573-7179</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEQx4MoWB9fwFPA82qySTZZbyK-oOKlBw9CyGZn29Q2qUmK-O1NXaE3T8Mw_8fwQ-iCkitKiLxOlFLRVKTmFaG1qKuvAzShQrJKUtkeoglpy0k14u0YnaS0JKTYhJig9xdjF84DXoGJ3vk5Nr7HOZoecO8i2OyCx3ZlUnKDs2a33mDnk5svcsJDDGucF4BtiJsQTQbchRKwNvED8hk6GswqwfnfPEWzh_vZ3VM1fX18vrudVpY1JFcgOW271gBXrBZKKU6AkKFu604IQWUnJZPUCtb0DQdJDe9rTlSvOma7zrBTdDnGbmL43ELKehm20ZdGzYhoCxmuZFHVo8rGkFKEQW-iK39-a0r0DqIeIeoCUf9C1F_FhEcT2OBd2ltUiWW8EaJI2ChJ5ejnEPft_wT_AB03f7A</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Fedenia, Mark</creator><creator>Ronen, Tavy</creator><creator>Nam, Seunghan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20240701</creationdate><title>Machine learning and trade direction classification: insights from the corporate bond market</title><author>Fedenia, Mark ; Ronen, Tavy ; Nam, Seunghan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-e7419b9ae4832588840e00f292b55517b77371c536d64e71a4d2408d8b3cbba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accounting/Auditing</topic><topic>Bond markets</topic><topic>Classification</topic><topic>Corporate bonds</topic><topic>Corporate Finance</topic><topic>Econometrics</topic><topic>Economics and Finance</topic><topic>Finance</topic><topic>Futures market</topic><topic>Institutional investments</topic><topic>Liquidity</topic><topic>Machine learning</topic><topic>Operations Research/Decision Theory</topic><topic>Original Research</topic><topic>Transparency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fedenia, Mark</creatorcontrib><creatorcontrib>Ronen, Tavy</creatorcontrib><creatorcontrib>Nam, Seunghan</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Review of quantitative finance and accounting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fedenia, Mark</au><au>Ronen, Tavy</au><au>Nam, Seunghan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning and trade direction classification: insights from the corporate bond market</atitle><jtitle>Review of quantitative finance and accounting</jtitle><stitle>Rev Quant Finan Acc</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>63</volume><issue>1</issue><spage>1</spage><epage>36</epage><pages>1-36</pages><issn>0924-865X</issn><eissn>1573-7179</eissn><abstract>Leveraging the availability of a large panel of signed trade data in the corporate bond market, we explore how machine learning methods can be used to improve upon standard trade direction classification methods in markets in general, both with and without pre-trade transparency. Using the signed data set allows us to show how both the trading and information environment at the time of the trade critically affect the accuracy of existing trade classification rules in general and also illustrate the importance of optimizing the feature set in correctly classifying trade direction. These insights extend to the equity market.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11156-024-01252-w</doi><tpages>36</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-865X |
ispartof | Review of quantitative finance and accounting, 2024-07, Vol.63 (1), p.1-36 |
issn | 0924-865X 1573-7179 |
language | eng |
recordid | cdi_proquest_journals_3059115487 |
source | SpringerLink (Online service) |
subjects | Accounting/Auditing Bond markets Classification Corporate bonds Corporate Finance Econometrics Economics and Finance Finance Futures market Institutional investments Liquidity Machine learning Operations Research/Decision Theory Original Research Transparency |
title | Machine learning and trade direction classification: insights from the corporate bond market |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A54%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20and%20trade%20direction%20classification:%20insights%20from%20the%20corporate%20bond%20market&rft.jtitle=Review%20of%20quantitative%20finance%20and%20accounting&rft.au=Fedenia,%20Mark&rft.date=2024-07-01&rft.volume=63&rft.issue=1&rft.spage=1&rft.epage=36&rft.pages=1-36&rft.issn=0924-865X&rft.eissn=1573-7179&rft_id=info:doi/10.1007/s11156-024-01252-w&rft_dat=%3Cproquest_cross%3E3059115487%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3059115487&rft_id=info:pmid/&rfr_iscdi=true |