Machine learning and trade direction classification: insights from the corporate bond market

Leveraging the availability of a large panel of signed trade data in the corporate bond market, we explore how machine learning methods can be used to improve upon standard trade direction classification methods in markets in general, both with and without pre-trade transparency. Using the signed da...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of quantitative finance and accounting 2024-07, Vol.63 (1), p.1-36
Hauptverfasser: Fedenia, Mark, Ronen, Tavy, Nam, Seunghan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 36
container_issue 1
container_start_page 1
container_title Review of quantitative finance and accounting
container_volume 63
creator Fedenia, Mark
Ronen, Tavy
Nam, Seunghan
description Leveraging the availability of a large panel of signed trade data in the corporate bond market, we explore how machine learning methods can be used to improve upon standard trade direction classification methods in markets in general, both with and without pre-trade transparency. Using the signed data set allows us to show how both the trading and information environment at the time of the trade critically affect the accuracy of existing trade classification rules in general and also illustrate the importance of optimizing the feature set in correctly classifying trade direction. These insights extend to the equity market.
doi_str_mv 10.1007/s11156-024-01252-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3059115487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3059115487</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-e7419b9ae4832588840e00f292b55517b77371c536d64e71a4d2408d8b3cbba3</originalsourceid><addsrcrecordid>eNp9kEtLAzEQx4MoWB9fwFPA82qySTZZbyK-oOKlBw9CyGZn29Q2qUmK-O1NXaE3T8Mw_8fwQ-iCkitKiLxOlFLRVKTmFaG1qKuvAzShQrJKUtkeoglpy0k14u0YnaS0JKTYhJig9xdjF84DXoGJ3vk5Nr7HOZoecO8i2OyCx3ZlUnKDs2a33mDnk5svcsJDDGucF4BtiJsQTQbchRKwNvED8hk6GswqwfnfPEWzh_vZ3VM1fX18vrudVpY1JFcgOW271gBXrBZKKU6AkKFu604IQWUnJZPUCtb0DQdJDe9rTlSvOma7zrBTdDnGbmL43ELKehm20ZdGzYhoCxmuZFHVo8rGkFKEQW-iK39-a0r0DqIeIeoCUf9C1F_FhEcT2OBd2ltUiWW8EaJI2ChJ5ejnEPft_wT_AB03f7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3059115487</pqid></control><display><type>article</type><title>Machine learning and trade direction classification: insights from the corporate bond market</title><source>SpringerLink (Online service)</source><creator>Fedenia, Mark ; Ronen, Tavy ; Nam, Seunghan</creator><creatorcontrib>Fedenia, Mark ; Ronen, Tavy ; Nam, Seunghan</creatorcontrib><description>Leveraging the availability of a large panel of signed trade data in the corporate bond market, we explore how machine learning methods can be used to improve upon standard trade direction classification methods in markets in general, both with and without pre-trade transparency. Using the signed data set allows us to show how both the trading and information environment at the time of the trade critically affect the accuracy of existing trade classification rules in general and also illustrate the importance of optimizing the feature set in correctly classifying trade direction. These insights extend to the equity market.</description><identifier>ISSN: 0924-865X</identifier><identifier>EISSN: 1573-7179</identifier><identifier>DOI: 10.1007/s11156-024-01252-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accounting/Auditing ; Bond markets ; Classification ; Corporate bonds ; Corporate Finance ; Econometrics ; Economics and Finance ; Finance ; Futures market ; Institutional investments ; Liquidity ; Machine learning ; Operations Research/Decision Theory ; Original Research ; Transparency</subject><ispartof>Review of quantitative finance and accounting, 2024-07, Vol.63 (1), p.1-36</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c360t-e7419b9ae4832588840e00f292b55517b77371c536d64e71a4d2408d8b3cbba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11156-024-01252-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11156-024-01252-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Fedenia, Mark</creatorcontrib><creatorcontrib>Ronen, Tavy</creatorcontrib><creatorcontrib>Nam, Seunghan</creatorcontrib><title>Machine learning and trade direction classification: insights from the corporate bond market</title><title>Review of quantitative finance and accounting</title><addtitle>Rev Quant Finan Acc</addtitle><description>Leveraging the availability of a large panel of signed trade data in the corporate bond market, we explore how machine learning methods can be used to improve upon standard trade direction classification methods in markets in general, both with and without pre-trade transparency. Using the signed data set allows us to show how both the trading and information environment at the time of the trade critically affect the accuracy of existing trade classification rules in general and also illustrate the importance of optimizing the feature set in correctly classifying trade direction. These insights extend to the equity market.</description><subject>Accounting/Auditing</subject><subject>Bond markets</subject><subject>Classification</subject><subject>Corporate bonds</subject><subject>Corporate Finance</subject><subject>Econometrics</subject><subject>Economics and Finance</subject><subject>Finance</subject><subject>Futures market</subject><subject>Institutional investments</subject><subject>Liquidity</subject><subject>Machine learning</subject><subject>Operations Research/Decision Theory</subject><subject>Original Research</subject><subject>Transparency</subject><issn>0924-865X</issn><issn>1573-7179</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEQx4MoWB9fwFPA82qySTZZbyK-oOKlBw9CyGZn29Q2qUmK-O1NXaE3T8Mw_8fwQ-iCkitKiLxOlFLRVKTmFaG1qKuvAzShQrJKUtkeoglpy0k14u0YnaS0JKTYhJig9xdjF84DXoGJ3vk5Nr7HOZoecO8i2OyCx3ZlUnKDs2a33mDnk5svcsJDDGucF4BtiJsQTQbchRKwNvED8hk6GswqwfnfPEWzh_vZ3VM1fX18vrudVpY1JFcgOW271gBXrBZKKU6AkKFu604IQWUnJZPUCtb0DQdJDe9rTlSvOma7zrBTdDnGbmL43ELKehm20ZdGzYhoCxmuZFHVo8rGkFKEQW-iK39-a0r0DqIeIeoCUf9C1F_FhEcT2OBd2ltUiWW8EaJI2ChJ5ejnEPft_wT_AB03f7A</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Fedenia, Mark</creator><creator>Ronen, Tavy</creator><creator>Nam, Seunghan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20240701</creationdate><title>Machine learning and trade direction classification: insights from the corporate bond market</title><author>Fedenia, Mark ; Ronen, Tavy ; Nam, Seunghan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-e7419b9ae4832588840e00f292b55517b77371c536d64e71a4d2408d8b3cbba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accounting/Auditing</topic><topic>Bond markets</topic><topic>Classification</topic><topic>Corporate bonds</topic><topic>Corporate Finance</topic><topic>Econometrics</topic><topic>Economics and Finance</topic><topic>Finance</topic><topic>Futures market</topic><topic>Institutional investments</topic><topic>Liquidity</topic><topic>Machine learning</topic><topic>Operations Research/Decision Theory</topic><topic>Original Research</topic><topic>Transparency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fedenia, Mark</creatorcontrib><creatorcontrib>Ronen, Tavy</creatorcontrib><creatorcontrib>Nam, Seunghan</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Review of quantitative finance and accounting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fedenia, Mark</au><au>Ronen, Tavy</au><au>Nam, Seunghan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning and trade direction classification: insights from the corporate bond market</atitle><jtitle>Review of quantitative finance and accounting</jtitle><stitle>Rev Quant Finan Acc</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>63</volume><issue>1</issue><spage>1</spage><epage>36</epage><pages>1-36</pages><issn>0924-865X</issn><eissn>1573-7179</eissn><abstract>Leveraging the availability of a large panel of signed trade data in the corporate bond market, we explore how machine learning methods can be used to improve upon standard trade direction classification methods in markets in general, both with and without pre-trade transparency. Using the signed data set allows us to show how both the trading and information environment at the time of the trade critically affect the accuracy of existing trade classification rules in general and also illustrate the importance of optimizing the feature set in correctly classifying trade direction. These insights extend to the equity market.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11156-024-01252-w</doi><tpages>36</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-865X
ispartof Review of quantitative finance and accounting, 2024-07, Vol.63 (1), p.1-36
issn 0924-865X
1573-7179
language eng
recordid cdi_proquest_journals_3059115487
source SpringerLink (Online service)
subjects Accounting/Auditing
Bond markets
Classification
Corporate bonds
Corporate Finance
Econometrics
Economics and Finance
Finance
Futures market
Institutional investments
Liquidity
Machine learning
Operations Research/Decision Theory
Original Research
Transparency
title Machine learning and trade direction classification: insights from the corporate bond market
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A54%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20and%20trade%20direction%20classification:%20insights%20from%20the%20corporate%20bond%20market&rft.jtitle=Review%20of%20quantitative%20finance%20and%20accounting&rft.au=Fedenia,%20Mark&rft.date=2024-07-01&rft.volume=63&rft.issue=1&rft.spage=1&rft.epage=36&rft.pages=1-36&rft.issn=0924-865X&rft.eissn=1573-7179&rft_id=info:doi/10.1007/s11156-024-01252-w&rft_dat=%3Cproquest_cross%3E3059115487%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3059115487&rft_id=info:pmid/&rfr_iscdi=true