High‐Performance Thermoelectric Fibers from Metal‐Backboned Polymers for Body‐Temperature Wearable Power Devices
Metal‐backboned polymers (MBPs), with a unique backbone consisting of bonded metal atoms, are promising for optic, electric, magnetic, and thermoelectric fields. However, the application of MBP remains relatively understudied. Here, we develop a shear‐induced orientation method to construct a flexib...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie 2024-06, Vol.136 (23), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 23 |
container_start_page | |
container_title | Angewandte Chemie |
container_volume | 136 |
creator | Wang, Ning Zeng, Kaiwen Zheng, Yuanyuan Jiang, Hongyu Yang, Yibei Zhang, Yifeng Li, Dingke Yu, Sihui Ye, Qian Peng, Huisheng |
description | Metal‐backboned polymers (MBPs), with a unique backbone consisting of bonded metal atoms, are promising for optic, electric, magnetic, and thermoelectric fields. However, the application of MBP remains relatively understudied. Here, we develop a shear‐induced orientation method to construct a flexible nickel‐backboned polymer/carbon nanotube (NBP/CNT) thermoelectric composite fiber. It demonstrated a power factor of 719.48 μW ⋅m−1 K−2, which is ca. 3.5 times as high as the bare CNT fiber. Remarkably, with the regulation of carrier mobility and carrier concentration of NBP, the composite fiber further showed simultaneous increases in electrical conductivity and Seebeck coefficient in comparison to the bare CNT fiber. The NBP/CNT fiber can be integrated into fabrics to harvest thermal energy of human body to generate an output voltage of 3.09 mV at a temperature difference of 8 K. This research opens a new avenue for the development of MBPs in power supply.
A novel nickel‐backboned polymer/carbon nanotube thermoelectric composite fiber is fabricated through a shear‐induced orientation method. It shows simultaneous increases in electrical conductivity and Seebeck coefficient, with a power factor of 719.48 μW m−1 K−2 as high as 3.5 times of the bare carbon nanotube fiber, opening a new avenue for the development of metal‐backboned polymers in power supply. |
doi_str_mv | 10.1002/ange.202403415 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3059109652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3059109652</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1175-a5a7c441e9c5529d76dff12a3d0d0b53ada8835cdaa5c250d5693511d5616c83</originalsourceid><addsrcrecordid>eNqFkLFOwzAURS0EEqWwMkdiTrGdOInHttAWqUCHSIyRY7-0KUlcXtJW2fgEvpEvIaUIRqY73HPeky4h14wOGKX8VlVLGHDKfer5TJyQHhOcuV4owlPSo9T33Yj78pxc1PWaUhrwUPbIbpYvV5_vHwvAzGKpKg1OvAIsLRSgG8y1M8lTwNrJ0JbOIzSq6PCR0q-prcA4C1u05Xdv0RlZ03ZtDOUGUDVbBOcFFKq0gA7cAzp3sMs11JfkLFNFDVc_2Sfx5D4ez9z58_RhPJy7mrFQuEqoUPs-A6mF4NKEgckyxpVnqKGp8JRRUeQJbZQSmgtqRCA9wViXLNCR1yc3x7MbtG9bqJtkbbdYdR8TjwrJqAwE76jBkdJo6xohSzaYlwrbhNHkMG1ymDb5nbYT5FHY5wW0_9DJ8Gl6_-d-AehAgY4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3059109652</pqid></control><display><type>article</type><title>High‐Performance Thermoelectric Fibers from Metal‐Backboned Polymers for Body‐Temperature Wearable Power Devices</title><source>Wiley Online Library All Journals</source><creator>Wang, Ning ; Zeng, Kaiwen ; Zheng, Yuanyuan ; Jiang, Hongyu ; Yang, Yibei ; Zhang, Yifeng ; Li, Dingke ; Yu, Sihui ; Ye, Qian ; Peng, Huisheng</creator><creatorcontrib>Wang, Ning ; Zeng, Kaiwen ; Zheng, Yuanyuan ; Jiang, Hongyu ; Yang, Yibei ; Zhang, Yifeng ; Li, Dingke ; Yu, Sihui ; Ye, Qian ; Peng, Huisheng</creatorcontrib><description>Metal‐backboned polymers (MBPs), with a unique backbone consisting of bonded metal atoms, are promising for optic, electric, magnetic, and thermoelectric fields. However, the application of MBP remains relatively understudied. Here, we develop a shear‐induced orientation method to construct a flexible nickel‐backboned polymer/carbon nanotube (NBP/CNT) thermoelectric composite fiber. It demonstrated a power factor of 719.48 μW ⋅m−1 K−2, which is ca. 3.5 times as high as the bare CNT fiber. Remarkably, with the regulation of carrier mobility and carrier concentration of NBP, the composite fiber further showed simultaneous increases in electrical conductivity and Seebeck coefficient in comparison to the bare CNT fiber. The NBP/CNT fiber can be integrated into fabrics to harvest thermal energy of human body to generate an output voltage of 3.09 mV at a temperature difference of 8 K. This research opens a new avenue for the development of MBPs in power supply.
A novel nickel‐backboned polymer/carbon nanotube thermoelectric composite fiber is fabricated through a shear‐induced orientation method. It shows simultaneous increases in electrical conductivity and Seebeck coefficient, with a power factor of 719.48 μW m−1 K−2 as high as 3.5 times of the bare carbon nanotube fiber, opening a new avenue for the development of metal‐backboned polymers in power supply.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202403415</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Body temperature ; carbon nanotube ; Carbon nanotubes ; Carrier density ; Carrier mobility ; Chemical bonds ; Electrical conductivity ; Electrical resistivity ; Energy harvesting ; fiber ; Nickel ; nickel-backboned polymer ; Polymers ; Power factor ; Seebeck effect ; Temperature gradients ; Thermal energy ; thermoelectric device ; Thermoelectricity</subject><ispartof>Angewandte Chemie, 2024-06, Vol.136 (23), p.n/a</ispartof><rights>2024 Wiley-VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1175-a5a7c441e9c5529d76dff12a3d0d0b53ada8835cdaa5c250d5693511d5616c83</cites><orcidid>0000-0002-2142-2945</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202403415$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202403415$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Zeng, Kaiwen</creatorcontrib><creatorcontrib>Zheng, Yuanyuan</creatorcontrib><creatorcontrib>Jiang, Hongyu</creatorcontrib><creatorcontrib>Yang, Yibei</creatorcontrib><creatorcontrib>Zhang, Yifeng</creatorcontrib><creatorcontrib>Li, Dingke</creatorcontrib><creatorcontrib>Yu, Sihui</creatorcontrib><creatorcontrib>Ye, Qian</creatorcontrib><creatorcontrib>Peng, Huisheng</creatorcontrib><title>High‐Performance Thermoelectric Fibers from Metal‐Backboned Polymers for Body‐Temperature Wearable Power Devices</title><title>Angewandte Chemie</title><description>Metal‐backboned polymers (MBPs), with a unique backbone consisting of bonded metal atoms, are promising for optic, electric, magnetic, and thermoelectric fields. However, the application of MBP remains relatively understudied. Here, we develop a shear‐induced orientation method to construct a flexible nickel‐backboned polymer/carbon nanotube (NBP/CNT) thermoelectric composite fiber. It demonstrated a power factor of 719.48 μW ⋅m−1 K−2, which is ca. 3.5 times as high as the bare CNT fiber. Remarkably, with the regulation of carrier mobility and carrier concentration of NBP, the composite fiber further showed simultaneous increases in electrical conductivity and Seebeck coefficient in comparison to the bare CNT fiber. The NBP/CNT fiber can be integrated into fabrics to harvest thermal energy of human body to generate an output voltage of 3.09 mV at a temperature difference of 8 K. This research opens a new avenue for the development of MBPs in power supply.
A novel nickel‐backboned polymer/carbon nanotube thermoelectric composite fiber is fabricated through a shear‐induced orientation method. It shows simultaneous increases in electrical conductivity and Seebeck coefficient, with a power factor of 719.48 μW m−1 K−2 as high as 3.5 times of the bare carbon nanotube fiber, opening a new avenue for the development of metal‐backboned polymers in power supply.</description><subject>Body temperature</subject><subject>carbon nanotube</subject><subject>Carbon nanotubes</subject><subject>Carrier density</subject><subject>Carrier mobility</subject><subject>Chemical bonds</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Energy harvesting</subject><subject>fiber</subject><subject>Nickel</subject><subject>nickel-backboned polymer</subject><subject>Polymers</subject><subject>Power factor</subject><subject>Seebeck effect</subject><subject>Temperature gradients</subject><subject>Thermal energy</subject><subject>thermoelectric device</subject><subject>Thermoelectricity</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAURS0EEqWwMkdiTrGdOInHttAWqUCHSIyRY7-0KUlcXtJW2fgEvpEvIaUIRqY73HPeky4h14wOGKX8VlVLGHDKfer5TJyQHhOcuV4owlPSo9T33Yj78pxc1PWaUhrwUPbIbpYvV5_vHwvAzGKpKg1OvAIsLRSgG8y1M8lTwNrJ0JbOIzSq6PCR0q-prcA4C1u05Xdv0RlZ03ZtDOUGUDVbBOcFFKq0gA7cAzp3sMs11JfkLFNFDVc_2Sfx5D4ez9z58_RhPJy7mrFQuEqoUPs-A6mF4NKEgckyxpVnqKGp8JRRUeQJbZQSmgtqRCA9wViXLNCR1yc3x7MbtG9bqJtkbbdYdR8TjwrJqAwE76jBkdJo6xohSzaYlwrbhNHkMG1ymDb5nbYT5FHY5wW0_9DJ8Gl6_-d-AehAgY4</recordid><startdate>20240603</startdate><enddate>20240603</enddate><creator>Wang, Ning</creator><creator>Zeng, Kaiwen</creator><creator>Zheng, Yuanyuan</creator><creator>Jiang, Hongyu</creator><creator>Yang, Yibei</creator><creator>Zhang, Yifeng</creator><creator>Li, Dingke</creator><creator>Yu, Sihui</creator><creator>Ye, Qian</creator><creator>Peng, Huisheng</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2142-2945</orcidid></search><sort><creationdate>20240603</creationdate><title>High‐Performance Thermoelectric Fibers from Metal‐Backboned Polymers for Body‐Temperature Wearable Power Devices</title><author>Wang, Ning ; Zeng, Kaiwen ; Zheng, Yuanyuan ; Jiang, Hongyu ; Yang, Yibei ; Zhang, Yifeng ; Li, Dingke ; Yu, Sihui ; Ye, Qian ; Peng, Huisheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1175-a5a7c441e9c5529d76dff12a3d0d0b53ada8835cdaa5c250d5693511d5616c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Body temperature</topic><topic>carbon nanotube</topic><topic>Carbon nanotubes</topic><topic>Carrier density</topic><topic>Carrier mobility</topic><topic>Chemical bonds</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Energy harvesting</topic><topic>fiber</topic><topic>Nickel</topic><topic>nickel-backboned polymer</topic><topic>Polymers</topic><topic>Power factor</topic><topic>Seebeck effect</topic><topic>Temperature gradients</topic><topic>Thermal energy</topic><topic>thermoelectric device</topic><topic>Thermoelectricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Zeng, Kaiwen</creatorcontrib><creatorcontrib>Zheng, Yuanyuan</creatorcontrib><creatorcontrib>Jiang, Hongyu</creatorcontrib><creatorcontrib>Yang, Yibei</creatorcontrib><creatorcontrib>Zhang, Yifeng</creatorcontrib><creatorcontrib>Li, Dingke</creatorcontrib><creatorcontrib>Yu, Sihui</creatorcontrib><creatorcontrib>Ye, Qian</creatorcontrib><creatorcontrib>Peng, Huisheng</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Ning</au><au>Zeng, Kaiwen</au><au>Zheng, Yuanyuan</au><au>Jiang, Hongyu</au><au>Yang, Yibei</au><au>Zhang, Yifeng</au><au>Li, Dingke</au><au>Yu, Sihui</au><au>Ye, Qian</au><au>Peng, Huisheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High‐Performance Thermoelectric Fibers from Metal‐Backboned Polymers for Body‐Temperature Wearable Power Devices</atitle><jtitle>Angewandte Chemie</jtitle><date>2024-06-03</date><risdate>2024</risdate><volume>136</volume><issue>23</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Metal‐backboned polymers (MBPs), with a unique backbone consisting of bonded metal atoms, are promising for optic, electric, magnetic, and thermoelectric fields. However, the application of MBP remains relatively understudied. Here, we develop a shear‐induced orientation method to construct a flexible nickel‐backboned polymer/carbon nanotube (NBP/CNT) thermoelectric composite fiber. It demonstrated a power factor of 719.48 μW ⋅m−1 K−2, which is ca. 3.5 times as high as the bare CNT fiber. Remarkably, with the regulation of carrier mobility and carrier concentration of NBP, the composite fiber further showed simultaneous increases in electrical conductivity and Seebeck coefficient in comparison to the bare CNT fiber. The NBP/CNT fiber can be integrated into fabrics to harvest thermal energy of human body to generate an output voltage of 3.09 mV at a temperature difference of 8 K. This research opens a new avenue for the development of MBPs in power supply.
A novel nickel‐backboned polymer/carbon nanotube thermoelectric composite fiber is fabricated through a shear‐induced orientation method. It shows simultaneous increases in electrical conductivity and Seebeck coefficient, with a power factor of 719.48 μW m−1 K−2 as high as 3.5 times of the bare carbon nanotube fiber, opening a new avenue for the development of metal‐backboned polymers in power supply.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202403415</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-2142-2945</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-8249 |
ispartof | Angewandte Chemie, 2024-06, Vol.136 (23), p.n/a |
issn | 0044-8249 1521-3757 |
language | eng |
recordid | cdi_proquest_journals_3059109652 |
source | Wiley Online Library All Journals |
subjects | Body temperature carbon nanotube Carbon nanotubes Carrier density Carrier mobility Chemical bonds Electrical conductivity Electrical resistivity Energy harvesting fiber Nickel nickel-backboned polymer Polymers Power factor Seebeck effect Temperature gradients Thermal energy thermoelectric device Thermoelectricity |
title | High‐Performance Thermoelectric Fibers from Metal‐Backboned Polymers for Body‐Temperature Wearable Power Devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A30%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%E2%80%90Performance%20Thermoelectric%20Fibers%20from%20Metal%E2%80%90Backboned%20Polymers%20for%20Body%E2%80%90Temperature%20Wearable%20Power%20Devices&rft.jtitle=Angewandte%20Chemie&rft.au=Wang,%20Ning&rft.date=2024-06-03&rft.volume=136&rft.issue=23&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202403415&rft_dat=%3Cproquest_cross%3E3059109652%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3059109652&rft_id=info:pmid/&rfr_iscdi=true |