High‐Performance Thermoelectric Fibers from Metal‐Backboned Polymers for Body‐Temperature Wearable Power Devices

Metal‐backboned polymers (MBPs), with a unique backbone consisting of bonded metal atoms, are promising for optic, electric, magnetic, and thermoelectric fields. However, the application of MBP remains relatively understudied. Here, we develop a shear‐induced orientation method to construct a flexib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2024-06, Vol.136 (23), p.n/a
Hauptverfasser: Wang, Ning, Zeng, Kaiwen, Zheng, Yuanyuan, Jiang, Hongyu, Yang, Yibei, Zhang, Yifeng, Li, Dingke, Yu, Sihui, Ye, Qian, Peng, Huisheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 23
container_start_page
container_title Angewandte Chemie
container_volume 136
creator Wang, Ning
Zeng, Kaiwen
Zheng, Yuanyuan
Jiang, Hongyu
Yang, Yibei
Zhang, Yifeng
Li, Dingke
Yu, Sihui
Ye, Qian
Peng, Huisheng
description Metal‐backboned polymers (MBPs), with a unique backbone consisting of bonded metal atoms, are promising for optic, electric, magnetic, and thermoelectric fields. However, the application of MBP remains relatively understudied. Here, we develop a shear‐induced orientation method to construct a flexible nickel‐backboned polymer/carbon nanotube (NBP/CNT) thermoelectric composite fiber. It demonstrated a power factor of 719.48 μW ⋅m−1 K−2, which is ca. 3.5 times as high as the bare CNT fiber. Remarkably, with the regulation of carrier mobility and carrier concentration of NBP, the composite fiber further showed simultaneous increases in electrical conductivity and Seebeck coefficient in comparison to the bare CNT fiber. The NBP/CNT fiber can be integrated into fabrics to harvest thermal energy of human body to generate an output voltage of 3.09 mV at a temperature difference of 8 K. This research opens a new avenue for the development of MBPs in power supply. A novel nickel‐backboned polymer/carbon nanotube thermoelectric composite fiber is fabricated through a shear‐induced orientation method. It shows simultaneous increases in electrical conductivity and Seebeck coefficient, with a power factor of 719.48 μW m−1 K−2 as high as 3.5 times of the bare carbon nanotube fiber, opening a new avenue for the development of metal‐backboned polymers in power supply.
doi_str_mv 10.1002/ange.202403415
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3059109652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3059109652</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1175-a5a7c441e9c5529d76dff12a3d0d0b53ada8835cdaa5c250d5693511d5616c83</originalsourceid><addsrcrecordid>eNqFkLFOwzAURS0EEqWwMkdiTrGdOInHttAWqUCHSIyRY7-0KUlcXtJW2fgEvpEvIaUIRqY73HPeky4h14wOGKX8VlVLGHDKfer5TJyQHhOcuV4owlPSo9T33Yj78pxc1PWaUhrwUPbIbpYvV5_vHwvAzGKpKg1OvAIsLRSgG8y1M8lTwNrJ0JbOIzSq6PCR0q-prcA4C1u05Xdv0RlZ03ZtDOUGUDVbBOcFFKq0gA7cAzp3sMs11JfkLFNFDVc_2Sfx5D4ez9z58_RhPJy7mrFQuEqoUPs-A6mF4NKEgckyxpVnqKGp8JRRUeQJbZQSmgtqRCA9wViXLNCR1yc3x7MbtG9bqJtkbbdYdR8TjwrJqAwE76jBkdJo6xohSzaYlwrbhNHkMG1ymDb5nbYT5FHY5wW0_9DJ8Gl6_-d-AehAgY4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3059109652</pqid></control><display><type>article</type><title>High‐Performance Thermoelectric Fibers from Metal‐Backboned Polymers for Body‐Temperature Wearable Power Devices</title><source>Wiley Online Library All Journals</source><creator>Wang, Ning ; Zeng, Kaiwen ; Zheng, Yuanyuan ; Jiang, Hongyu ; Yang, Yibei ; Zhang, Yifeng ; Li, Dingke ; Yu, Sihui ; Ye, Qian ; Peng, Huisheng</creator><creatorcontrib>Wang, Ning ; Zeng, Kaiwen ; Zheng, Yuanyuan ; Jiang, Hongyu ; Yang, Yibei ; Zhang, Yifeng ; Li, Dingke ; Yu, Sihui ; Ye, Qian ; Peng, Huisheng</creatorcontrib><description>Metal‐backboned polymers (MBPs), with a unique backbone consisting of bonded metal atoms, are promising for optic, electric, magnetic, and thermoelectric fields. However, the application of MBP remains relatively understudied. Here, we develop a shear‐induced orientation method to construct a flexible nickel‐backboned polymer/carbon nanotube (NBP/CNT) thermoelectric composite fiber. It demonstrated a power factor of 719.48 μW ⋅m−1 K−2, which is ca. 3.5 times as high as the bare CNT fiber. Remarkably, with the regulation of carrier mobility and carrier concentration of NBP, the composite fiber further showed simultaneous increases in electrical conductivity and Seebeck coefficient in comparison to the bare CNT fiber. The NBP/CNT fiber can be integrated into fabrics to harvest thermal energy of human body to generate an output voltage of 3.09 mV at a temperature difference of 8 K. This research opens a new avenue for the development of MBPs in power supply. A novel nickel‐backboned polymer/carbon nanotube thermoelectric composite fiber is fabricated through a shear‐induced orientation method. It shows simultaneous increases in electrical conductivity and Seebeck coefficient, with a power factor of 719.48 μW m−1 K−2 as high as 3.5 times of the bare carbon nanotube fiber, opening a new avenue for the development of metal‐backboned polymers in power supply.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202403415</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Body temperature ; carbon nanotube ; Carbon nanotubes ; Carrier density ; Carrier mobility ; Chemical bonds ; Electrical conductivity ; Electrical resistivity ; Energy harvesting ; fiber ; Nickel ; nickel-backboned polymer ; Polymers ; Power factor ; Seebeck effect ; Temperature gradients ; Thermal energy ; thermoelectric device ; Thermoelectricity</subject><ispartof>Angewandte Chemie, 2024-06, Vol.136 (23), p.n/a</ispartof><rights>2024 Wiley-VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1175-a5a7c441e9c5529d76dff12a3d0d0b53ada8835cdaa5c250d5693511d5616c83</cites><orcidid>0000-0002-2142-2945</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202403415$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202403415$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Zeng, Kaiwen</creatorcontrib><creatorcontrib>Zheng, Yuanyuan</creatorcontrib><creatorcontrib>Jiang, Hongyu</creatorcontrib><creatorcontrib>Yang, Yibei</creatorcontrib><creatorcontrib>Zhang, Yifeng</creatorcontrib><creatorcontrib>Li, Dingke</creatorcontrib><creatorcontrib>Yu, Sihui</creatorcontrib><creatorcontrib>Ye, Qian</creatorcontrib><creatorcontrib>Peng, Huisheng</creatorcontrib><title>High‐Performance Thermoelectric Fibers from Metal‐Backboned Polymers for Body‐Temperature Wearable Power Devices</title><title>Angewandte Chemie</title><description>Metal‐backboned polymers (MBPs), with a unique backbone consisting of bonded metal atoms, are promising for optic, electric, magnetic, and thermoelectric fields. However, the application of MBP remains relatively understudied. Here, we develop a shear‐induced orientation method to construct a flexible nickel‐backboned polymer/carbon nanotube (NBP/CNT) thermoelectric composite fiber. It demonstrated a power factor of 719.48 μW ⋅m−1 K−2, which is ca. 3.5 times as high as the bare CNT fiber. Remarkably, with the regulation of carrier mobility and carrier concentration of NBP, the composite fiber further showed simultaneous increases in electrical conductivity and Seebeck coefficient in comparison to the bare CNT fiber. The NBP/CNT fiber can be integrated into fabrics to harvest thermal energy of human body to generate an output voltage of 3.09 mV at a temperature difference of 8 K. This research opens a new avenue for the development of MBPs in power supply. A novel nickel‐backboned polymer/carbon nanotube thermoelectric composite fiber is fabricated through a shear‐induced orientation method. It shows simultaneous increases in electrical conductivity and Seebeck coefficient, with a power factor of 719.48 μW m−1 K−2 as high as 3.5 times of the bare carbon nanotube fiber, opening a new avenue for the development of metal‐backboned polymers in power supply.</description><subject>Body temperature</subject><subject>carbon nanotube</subject><subject>Carbon nanotubes</subject><subject>Carrier density</subject><subject>Carrier mobility</subject><subject>Chemical bonds</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Energy harvesting</subject><subject>fiber</subject><subject>Nickel</subject><subject>nickel-backboned polymer</subject><subject>Polymers</subject><subject>Power factor</subject><subject>Seebeck effect</subject><subject>Temperature gradients</subject><subject>Thermal energy</subject><subject>thermoelectric device</subject><subject>Thermoelectricity</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAURS0EEqWwMkdiTrGdOInHttAWqUCHSIyRY7-0KUlcXtJW2fgEvpEvIaUIRqY73HPeky4h14wOGKX8VlVLGHDKfer5TJyQHhOcuV4owlPSo9T33Yj78pxc1PWaUhrwUPbIbpYvV5_vHwvAzGKpKg1OvAIsLRSgG8y1M8lTwNrJ0JbOIzSq6PCR0q-prcA4C1u05Xdv0RlZ03ZtDOUGUDVbBOcFFKq0gA7cAzp3sMs11JfkLFNFDVc_2Sfx5D4ez9z58_RhPJy7mrFQuEqoUPs-A6mF4NKEgckyxpVnqKGp8JRRUeQJbZQSmgtqRCA9wViXLNCR1yc3x7MbtG9bqJtkbbdYdR8TjwrJqAwE76jBkdJo6xohSzaYlwrbhNHkMG1ymDb5nbYT5FHY5wW0_9DJ8Gl6_-d-AehAgY4</recordid><startdate>20240603</startdate><enddate>20240603</enddate><creator>Wang, Ning</creator><creator>Zeng, Kaiwen</creator><creator>Zheng, Yuanyuan</creator><creator>Jiang, Hongyu</creator><creator>Yang, Yibei</creator><creator>Zhang, Yifeng</creator><creator>Li, Dingke</creator><creator>Yu, Sihui</creator><creator>Ye, Qian</creator><creator>Peng, Huisheng</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2142-2945</orcidid></search><sort><creationdate>20240603</creationdate><title>High‐Performance Thermoelectric Fibers from Metal‐Backboned Polymers for Body‐Temperature Wearable Power Devices</title><author>Wang, Ning ; Zeng, Kaiwen ; Zheng, Yuanyuan ; Jiang, Hongyu ; Yang, Yibei ; Zhang, Yifeng ; Li, Dingke ; Yu, Sihui ; Ye, Qian ; Peng, Huisheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1175-a5a7c441e9c5529d76dff12a3d0d0b53ada8835cdaa5c250d5693511d5616c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Body temperature</topic><topic>carbon nanotube</topic><topic>Carbon nanotubes</topic><topic>Carrier density</topic><topic>Carrier mobility</topic><topic>Chemical bonds</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Energy harvesting</topic><topic>fiber</topic><topic>Nickel</topic><topic>nickel-backboned polymer</topic><topic>Polymers</topic><topic>Power factor</topic><topic>Seebeck effect</topic><topic>Temperature gradients</topic><topic>Thermal energy</topic><topic>thermoelectric device</topic><topic>Thermoelectricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Zeng, Kaiwen</creatorcontrib><creatorcontrib>Zheng, Yuanyuan</creatorcontrib><creatorcontrib>Jiang, Hongyu</creatorcontrib><creatorcontrib>Yang, Yibei</creatorcontrib><creatorcontrib>Zhang, Yifeng</creatorcontrib><creatorcontrib>Li, Dingke</creatorcontrib><creatorcontrib>Yu, Sihui</creatorcontrib><creatorcontrib>Ye, Qian</creatorcontrib><creatorcontrib>Peng, Huisheng</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Ning</au><au>Zeng, Kaiwen</au><au>Zheng, Yuanyuan</au><au>Jiang, Hongyu</au><au>Yang, Yibei</au><au>Zhang, Yifeng</au><au>Li, Dingke</au><au>Yu, Sihui</au><au>Ye, Qian</au><au>Peng, Huisheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High‐Performance Thermoelectric Fibers from Metal‐Backboned Polymers for Body‐Temperature Wearable Power Devices</atitle><jtitle>Angewandte Chemie</jtitle><date>2024-06-03</date><risdate>2024</risdate><volume>136</volume><issue>23</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Metal‐backboned polymers (MBPs), with a unique backbone consisting of bonded metal atoms, are promising for optic, electric, magnetic, and thermoelectric fields. However, the application of MBP remains relatively understudied. Here, we develop a shear‐induced orientation method to construct a flexible nickel‐backboned polymer/carbon nanotube (NBP/CNT) thermoelectric composite fiber. It demonstrated a power factor of 719.48 μW ⋅m−1 K−2, which is ca. 3.5 times as high as the bare CNT fiber. Remarkably, with the regulation of carrier mobility and carrier concentration of NBP, the composite fiber further showed simultaneous increases in electrical conductivity and Seebeck coefficient in comparison to the bare CNT fiber. The NBP/CNT fiber can be integrated into fabrics to harvest thermal energy of human body to generate an output voltage of 3.09 mV at a temperature difference of 8 K. This research opens a new avenue for the development of MBPs in power supply. A novel nickel‐backboned polymer/carbon nanotube thermoelectric composite fiber is fabricated through a shear‐induced orientation method. It shows simultaneous increases in electrical conductivity and Seebeck coefficient, with a power factor of 719.48 μW m−1 K−2 as high as 3.5 times of the bare carbon nanotube fiber, opening a new avenue for the development of metal‐backboned polymers in power supply.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202403415</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-2142-2945</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2024-06, Vol.136 (23), p.n/a
issn 0044-8249
1521-3757
language eng
recordid cdi_proquest_journals_3059109652
source Wiley Online Library All Journals
subjects Body temperature
carbon nanotube
Carbon nanotubes
Carrier density
Carrier mobility
Chemical bonds
Electrical conductivity
Electrical resistivity
Energy harvesting
fiber
Nickel
nickel-backboned polymer
Polymers
Power factor
Seebeck effect
Temperature gradients
Thermal energy
thermoelectric device
Thermoelectricity
title High‐Performance Thermoelectric Fibers from Metal‐Backboned Polymers for Body‐Temperature Wearable Power Devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A30%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%E2%80%90Performance%20Thermoelectric%20Fibers%20from%20Metal%E2%80%90Backboned%20Polymers%20for%20Body%E2%80%90Temperature%20Wearable%20Power%20Devices&rft.jtitle=Angewandte%20Chemie&rft.au=Wang,%20Ning&rft.date=2024-06-03&rft.volume=136&rft.issue=23&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202403415&rft_dat=%3Cproquest_cross%3E3059109652%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3059109652&rft_id=info:pmid/&rfr_iscdi=true