Integration of a Degenerate System of ODEs
The integrability of a two-dimensional autonomous polynomial system of ordinary differential equations (ODEs) with a degenerate singular point at the origin that depends on six parameters is investigated. The integrability condition for the first quasihomogeneous approximation allows one of these pa...
Gespeichert in:
Veröffentlicht in: | Programming and computer software 2024-04, Vol.50 (2), p.128-137 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 137 |
---|---|
container_issue | 2 |
container_start_page | 128 |
container_title | Programming and computer software |
container_volume | 50 |
creator | Bruno, A. D. Edneral, V. F. |
description | The integrability of a two-dimensional autonomous polynomial system of ordinary differential equations (ODEs) with a degenerate singular point at the origin that depends on six parameters is investigated. The integrability condition for the first quasihomogeneous approximation allows one of these parameters to be fixed on a countable set of values. The further analysis is carried out for this value and five free parameters. Using the power geometry method, the system is reduced to a non-degenerate form through the blowup process. Then, the necessary conditions for its local integrability are calculated using the method of normal forms. In other words, the conditions for the parameters under which the original system is locally integrable near the degenerate stationary point are found. By resolving these conditions, we find seven two-parameter families in the five-dimensional parametric space. For parameter values from these families, the first integrals of the system are found. The cumbersome calculations that occur in the problem under consideration are carried out using computer algebra. |
doi_str_mv | 10.1134/S036176882402004X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3058744420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3058352473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-837bf9b51fb85f58b5d8081feaec390c3307aca3e9a5d5a392268407179093823</originalsourceid><addsrcrecordid>eNqFkE9Lw0AQxRdRsFY_gLeANyE6u7Ob3T1K_2ih0EMVvIVNOhtabFJ300O_vQkRPIh4Gnjv997AY-yWwwPnKB_XgBnXmTFCggCQ72dsxDMwKYqMn7NRb6e9f8muYtwB8A6SI3a_qFuqgmu3TZ00PnHJlCqqqVMoWZ9iS_teXk1n8ZpdePcR6eb7jtnbfPY6eUmXq-fF5GmZlsJmbWpQF94WivvCKK9MoTYGDPfkqEQLJSJoVzok69RGObRCZEaC5tqCRSNwzO6G3kNoPo8U23zXHEPdvcwRlNFSSgH_UaiE1NhRfKDK0MQYyOeHsN27cMo55P1w-a_huowYMrFj64rCT_PfoS9OumuM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3058352473</pqid></control><display><type>article</type><title>Integration of a Degenerate System of ODEs</title><source>Springer Nature - Complete Springer Journals</source><creator>Bruno, A. D. ; Edneral, V. F.</creator><creatorcontrib>Bruno, A. D. ; Edneral, V. F.</creatorcontrib><description>The integrability of a two-dimensional autonomous polynomial system of ordinary differential equations (ODEs) with a degenerate singular point at the origin that depends on six parameters is investigated. The integrability condition for the first quasihomogeneous approximation allows one of these parameters to be fixed on a countable set of values. The further analysis is carried out for this value and five free parameters. Using the power geometry method, the system is reduced to a non-degenerate form through the blowup process. Then, the necessary conditions for its local integrability are calculated using the method of normal forms. In other words, the conditions for the parameters under which the original system is locally integrable near the degenerate stationary point are found. By resolving these conditions, we find seven two-parameter families in the five-dimensional parametric space. For parameter values from these families, the first integrals of the system are found. The cumbersome calculations that occur in the problem under consideration are carried out using computer algebra.</description><identifier>ISSN: 0361-7688</identifier><identifier>EISSN: 1608-3261</identifier><identifier>DOI: 10.1134/S036176882402004X</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Approximation ; Artificial Intelligence ; Canonical forms ; Computer algebra ; Computer Science ; Differential equations ; Differential geometry ; Integral calculus ; Integral equations ; Investigations ; Mathematical analysis ; Mathematicians ; Operating Systems ; Ordinary differential equations ; Parameters ; Polynomials ; Software Engineering ; Software Engineering/Programming and Operating Systems ; Two dimensional analysis ; Variables</subject><ispartof>Programming and computer software, 2024-04, Vol.50 (2), p.128-137</ispartof><rights>Pleiades Publishing, Ltd. 2024. ISSN 0361-7688, Programming and Computer Software, 2024, Vol. 50, No. 2, pp. 128–137. © Pleiades Publishing, Ltd., 2024. Russian Text © The Author(s), 2024, published in Programmirovanie, 2024, Vol. 50, No. 2.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c296t-837bf9b51fb85f58b5d8081feaec390c3307aca3e9a5d5a392268407179093823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S036176882402004X$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S036176882402004X$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Bruno, A. D.</creatorcontrib><creatorcontrib>Edneral, V. F.</creatorcontrib><title>Integration of a Degenerate System of ODEs</title><title>Programming and computer software</title><addtitle>Program Comput Soft</addtitle><description>The integrability of a two-dimensional autonomous polynomial system of ordinary differential equations (ODEs) with a degenerate singular point at the origin that depends on six parameters is investigated. The integrability condition for the first quasihomogeneous approximation allows one of these parameters to be fixed on a countable set of values. The further analysis is carried out for this value and five free parameters. Using the power geometry method, the system is reduced to a non-degenerate form through the blowup process. Then, the necessary conditions for its local integrability are calculated using the method of normal forms. In other words, the conditions for the parameters under which the original system is locally integrable near the degenerate stationary point are found. By resolving these conditions, we find seven two-parameter families in the five-dimensional parametric space. For parameter values from these families, the first integrals of the system are found. The cumbersome calculations that occur in the problem under consideration are carried out using computer algebra.</description><subject>Approximation</subject><subject>Artificial Intelligence</subject><subject>Canonical forms</subject><subject>Computer algebra</subject><subject>Computer Science</subject><subject>Differential equations</subject><subject>Differential geometry</subject><subject>Integral calculus</subject><subject>Integral equations</subject><subject>Investigations</subject><subject>Mathematical analysis</subject><subject>Mathematicians</subject><subject>Operating Systems</subject><subject>Ordinary differential equations</subject><subject>Parameters</subject><subject>Polynomials</subject><subject>Software Engineering</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Two dimensional analysis</subject><subject>Variables</subject><issn>0361-7688</issn><issn>1608-3261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkE9Lw0AQxRdRsFY_gLeANyE6u7Ob3T1K_2ih0EMVvIVNOhtabFJ300O_vQkRPIh4Gnjv997AY-yWwwPnKB_XgBnXmTFCggCQ72dsxDMwKYqMn7NRb6e9f8muYtwB8A6SI3a_qFuqgmu3TZ00PnHJlCqqqVMoWZ9iS_teXk1n8ZpdePcR6eb7jtnbfPY6eUmXq-fF5GmZlsJmbWpQF94WivvCKK9MoTYGDPfkqEQLJSJoVzok69RGObRCZEaC5tqCRSNwzO6G3kNoPo8U23zXHEPdvcwRlNFSSgH_UaiE1NhRfKDK0MQYyOeHsN27cMo55P1w-a_huowYMrFj64rCT_PfoS9OumuM</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Bruno, A. D.</creator><creator>Edneral, V. F.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20240401</creationdate><title>Integration of a Degenerate System of ODEs</title><author>Bruno, A. D. ; Edneral, V. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-837bf9b51fb85f58b5d8081feaec390c3307aca3e9a5d5a392268407179093823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Approximation</topic><topic>Artificial Intelligence</topic><topic>Canonical forms</topic><topic>Computer algebra</topic><topic>Computer Science</topic><topic>Differential equations</topic><topic>Differential geometry</topic><topic>Integral calculus</topic><topic>Integral equations</topic><topic>Investigations</topic><topic>Mathematical analysis</topic><topic>Mathematicians</topic><topic>Operating Systems</topic><topic>Ordinary differential equations</topic><topic>Parameters</topic><topic>Polynomials</topic><topic>Software Engineering</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Two dimensional analysis</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bruno, A. D.</creatorcontrib><creatorcontrib>Edneral, V. F.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Programming and computer software</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bruno, A. D.</au><au>Edneral, V. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integration of a Degenerate System of ODEs</atitle><jtitle>Programming and computer software</jtitle><stitle>Program Comput Soft</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>50</volume><issue>2</issue><spage>128</spage><epage>137</epage><pages>128-137</pages><issn>0361-7688</issn><eissn>1608-3261</eissn><abstract>The integrability of a two-dimensional autonomous polynomial system of ordinary differential equations (ODEs) with a degenerate singular point at the origin that depends on six parameters is investigated. The integrability condition for the first quasihomogeneous approximation allows one of these parameters to be fixed on a countable set of values. The further analysis is carried out for this value and five free parameters. Using the power geometry method, the system is reduced to a non-degenerate form through the blowup process. Then, the necessary conditions for its local integrability are calculated using the method of normal forms. In other words, the conditions for the parameters under which the original system is locally integrable near the degenerate stationary point are found. By resolving these conditions, we find seven two-parameter families in the five-dimensional parametric space. For parameter values from these families, the first integrals of the system are found. The cumbersome calculations that occur in the problem under consideration are carried out using computer algebra.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S036176882402004X</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-7688 |
ispartof | Programming and computer software, 2024-04, Vol.50 (2), p.128-137 |
issn | 0361-7688 1608-3261 |
language | eng |
recordid | cdi_proquest_journals_3058744420 |
source | Springer Nature - Complete Springer Journals |
subjects | Approximation Artificial Intelligence Canonical forms Computer algebra Computer Science Differential equations Differential geometry Integral calculus Integral equations Investigations Mathematical analysis Mathematicians Operating Systems Ordinary differential equations Parameters Polynomials Software Engineering Software Engineering/Programming and Operating Systems Two dimensional analysis Variables |
title | Integration of a Degenerate System of ODEs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A58%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integration%20of%20a%20Degenerate%20System%20of%20ODEs&rft.jtitle=Programming%20and%20computer%20software&rft.au=Bruno,%20A.%20D.&rft.date=2024-04-01&rft.volume=50&rft.issue=2&rft.spage=128&rft.epage=137&rft.pages=128-137&rft.issn=0361-7688&rft.eissn=1608-3261&rft_id=info:doi/10.1134/S036176882402004X&rft_dat=%3Cproquest_cross%3E3058352473%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3058352473&rft_id=info:pmid/&rfr_iscdi=true |