Integration of a Degenerate System of ODEs

The integrability of a two-dimensional autonomous polynomial system of ordinary differential equations (ODEs) with a degenerate singular point at the origin that depends on six parameters is investigated. The integrability condition for the first quasihomogeneous approximation allows one of these pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Programming and computer software 2024-04, Vol.50 (2), p.128-137
Hauptverfasser: Bruno, A. D., Edneral, V. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 137
container_issue 2
container_start_page 128
container_title Programming and computer software
container_volume 50
creator Bruno, A. D.
Edneral, V. F.
description The integrability of a two-dimensional autonomous polynomial system of ordinary differential equations (ODEs) with a degenerate singular point at the origin that depends on six parameters is investigated. The integrability condition for the first quasihomogeneous approximation allows one of these parameters to be fixed on a countable set of values. The further analysis is carried out for this value and five free parameters. Using the power geometry method, the system is reduced to a non-degenerate form through the blowup process. Then, the necessary conditions for its local integrability are calculated using the method of normal forms. In other words, the conditions for the parameters under which the original system is locally integrable near the degenerate stationary point are found. By resolving these conditions, we find seven two-parameter families in the five-dimensional parametric space. For parameter values from these families, the first integrals of the system are found. The cumbersome calculations that occur in the problem under consideration are carried out using computer algebra.
doi_str_mv 10.1134/S036176882402004X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3058744420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3058352473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-837bf9b51fb85f58b5d8081feaec390c3307aca3e9a5d5a392268407179093823</originalsourceid><addsrcrecordid>eNqFkE9Lw0AQxRdRsFY_gLeANyE6u7Ob3T1K_2ih0EMVvIVNOhtabFJ300O_vQkRPIh4Gnjv997AY-yWwwPnKB_XgBnXmTFCggCQ72dsxDMwKYqMn7NRb6e9f8muYtwB8A6SI3a_qFuqgmu3TZ00PnHJlCqqqVMoWZ9iS_teXk1n8ZpdePcR6eb7jtnbfPY6eUmXq-fF5GmZlsJmbWpQF94WivvCKK9MoTYGDPfkqEQLJSJoVzok69RGObRCZEaC5tqCRSNwzO6G3kNoPo8U23zXHEPdvcwRlNFSSgH_UaiE1NhRfKDK0MQYyOeHsN27cMo55P1w-a_huowYMrFj64rCT_PfoS9OumuM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3058352473</pqid></control><display><type>article</type><title>Integration of a Degenerate System of ODEs</title><source>Springer Nature - Complete Springer Journals</source><creator>Bruno, A. D. ; Edneral, V. F.</creator><creatorcontrib>Bruno, A. D. ; Edneral, V. F.</creatorcontrib><description>The integrability of a two-dimensional autonomous polynomial system of ordinary differential equations (ODEs) with a degenerate singular point at the origin that depends on six parameters is investigated. The integrability condition for the first quasihomogeneous approximation allows one of these parameters to be fixed on a countable set of values. The further analysis is carried out for this value and five free parameters. Using the power geometry method, the system is reduced to a non-degenerate form through the blowup process. Then, the necessary conditions for its local integrability are calculated using the method of normal forms. In other words, the conditions for the parameters under which the original system is locally integrable near the degenerate stationary point are found. By resolving these conditions, we find seven two-parameter families in the five-dimensional parametric space. For parameter values from these families, the first integrals of the system are found. The cumbersome calculations that occur in the problem under consideration are carried out using computer algebra.</description><identifier>ISSN: 0361-7688</identifier><identifier>EISSN: 1608-3261</identifier><identifier>DOI: 10.1134/S036176882402004X</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Approximation ; Artificial Intelligence ; Canonical forms ; Computer algebra ; Computer Science ; Differential equations ; Differential geometry ; Integral calculus ; Integral equations ; Investigations ; Mathematical analysis ; Mathematicians ; Operating Systems ; Ordinary differential equations ; Parameters ; Polynomials ; Software Engineering ; Software Engineering/Programming and Operating Systems ; Two dimensional analysis ; Variables</subject><ispartof>Programming and computer software, 2024-04, Vol.50 (2), p.128-137</ispartof><rights>Pleiades Publishing, Ltd. 2024. ISSN 0361-7688, Programming and Computer Software, 2024, Vol. 50, No. 2, pp. 128–137. © Pleiades Publishing, Ltd., 2024. Russian Text © The Author(s), 2024, published in Programmirovanie, 2024, Vol. 50, No. 2.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c296t-837bf9b51fb85f58b5d8081feaec390c3307aca3e9a5d5a392268407179093823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S036176882402004X$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S036176882402004X$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Bruno, A. D.</creatorcontrib><creatorcontrib>Edneral, V. F.</creatorcontrib><title>Integration of a Degenerate System of ODEs</title><title>Programming and computer software</title><addtitle>Program Comput Soft</addtitle><description>The integrability of a two-dimensional autonomous polynomial system of ordinary differential equations (ODEs) with a degenerate singular point at the origin that depends on six parameters is investigated. The integrability condition for the first quasihomogeneous approximation allows one of these parameters to be fixed on a countable set of values. The further analysis is carried out for this value and five free parameters. Using the power geometry method, the system is reduced to a non-degenerate form through the blowup process. Then, the necessary conditions for its local integrability are calculated using the method of normal forms. In other words, the conditions for the parameters under which the original system is locally integrable near the degenerate stationary point are found. By resolving these conditions, we find seven two-parameter families in the five-dimensional parametric space. For parameter values from these families, the first integrals of the system are found. The cumbersome calculations that occur in the problem under consideration are carried out using computer algebra.</description><subject>Approximation</subject><subject>Artificial Intelligence</subject><subject>Canonical forms</subject><subject>Computer algebra</subject><subject>Computer Science</subject><subject>Differential equations</subject><subject>Differential geometry</subject><subject>Integral calculus</subject><subject>Integral equations</subject><subject>Investigations</subject><subject>Mathematical analysis</subject><subject>Mathematicians</subject><subject>Operating Systems</subject><subject>Ordinary differential equations</subject><subject>Parameters</subject><subject>Polynomials</subject><subject>Software Engineering</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Two dimensional analysis</subject><subject>Variables</subject><issn>0361-7688</issn><issn>1608-3261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkE9Lw0AQxRdRsFY_gLeANyE6u7Ob3T1K_2ih0EMVvIVNOhtabFJ300O_vQkRPIh4Gnjv997AY-yWwwPnKB_XgBnXmTFCggCQ72dsxDMwKYqMn7NRb6e9f8muYtwB8A6SI3a_qFuqgmu3TZ00PnHJlCqqqVMoWZ9iS_teXk1n8ZpdePcR6eb7jtnbfPY6eUmXq-fF5GmZlsJmbWpQF94WivvCKK9MoTYGDPfkqEQLJSJoVzok69RGObRCZEaC5tqCRSNwzO6G3kNoPo8U23zXHEPdvcwRlNFSSgH_UaiE1NhRfKDK0MQYyOeHsN27cMo55P1w-a_huowYMrFj64rCT_PfoS9OumuM</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Bruno, A. D.</creator><creator>Edneral, V. F.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20240401</creationdate><title>Integration of a Degenerate System of ODEs</title><author>Bruno, A. D. ; Edneral, V. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-837bf9b51fb85f58b5d8081feaec390c3307aca3e9a5d5a392268407179093823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Approximation</topic><topic>Artificial Intelligence</topic><topic>Canonical forms</topic><topic>Computer algebra</topic><topic>Computer Science</topic><topic>Differential equations</topic><topic>Differential geometry</topic><topic>Integral calculus</topic><topic>Integral equations</topic><topic>Investigations</topic><topic>Mathematical analysis</topic><topic>Mathematicians</topic><topic>Operating Systems</topic><topic>Ordinary differential equations</topic><topic>Parameters</topic><topic>Polynomials</topic><topic>Software Engineering</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Two dimensional analysis</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bruno, A. D.</creatorcontrib><creatorcontrib>Edneral, V. F.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Programming and computer software</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bruno, A. D.</au><au>Edneral, V. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integration of a Degenerate System of ODEs</atitle><jtitle>Programming and computer software</jtitle><stitle>Program Comput Soft</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>50</volume><issue>2</issue><spage>128</spage><epage>137</epage><pages>128-137</pages><issn>0361-7688</issn><eissn>1608-3261</eissn><abstract>The integrability of a two-dimensional autonomous polynomial system of ordinary differential equations (ODEs) with a degenerate singular point at the origin that depends on six parameters is investigated. The integrability condition for the first quasihomogeneous approximation allows one of these parameters to be fixed on a countable set of values. The further analysis is carried out for this value and five free parameters. Using the power geometry method, the system is reduced to a non-degenerate form through the blowup process. Then, the necessary conditions for its local integrability are calculated using the method of normal forms. In other words, the conditions for the parameters under which the original system is locally integrable near the degenerate stationary point are found. By resolving these conditions, we find seven two-parameter families in the five-dimensional parametric space. For parameter values from these families, the first integrals of the system are found. The cumbersome calculations that occur in the problem under consideration are carried out using computer algebra.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S036176882402004X</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-7688
ispartof Programming and computer software, 2024-04, Vol.50 (2), p.128-137
issn 0361-7688
1608-3261
language eng
recordid cdi_proquest_journals_3058744420
source Springer Nature - Complete Springer Journals
subjects Approximation
Artificial Intelligence
Canonical forms
Computer algebra
Computer Science
Differential equations
Differential geometry
Integral calculus
Integral equations
Investigations
Mathematical analysis
Mathematicians
Operating Systems
Ordinary differential equations
Parameters
Polynomials
Software Engineering
Software Engineering/Programming and Operating Systems
Two dimensional analysis
Variables
title Integration of a Degenerate System of ODEs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A58%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integration%20of%20a%20Degenerate%20System%20of%20ODEs&rft.jtitle=Programming%20and%20computer%20software&rft.au=Bruno,%20A.%20D.&rft.date=2024-04-01&rft.volume=50&rft.issue=2&rft.spage=128&rft.epage=137&rft.pages=128-137&rft.issn=0361-7688&rft.eissn=1608-3261&rft_id=info:doi/10.1134/S036176882402004X&rft_dat=%3Cproquest_cross%3E3058352473%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3058352473&rft_id=info:pmid/&rfr_iscdi=true