APTT: An accuracy-preserved tensor-train method for the Boltzmann-BGK equation

Solving the Boltzmann-BGK equation with traditional numerical methods suffers from high computational and memory costs due to the curse of dimensionality. In this paper, we propose a novel accuracy-preserved tensor-train (APTT) method to efficiently solve the Boltzmann-BGK equation. A second-order f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-05
Hauptverfasser: Zhu, Zhitao, Xiao, Chuanfu, Tang, Kejun, Huang, Jizu, Yang, Chao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Zhu, Zhitao
Xiao, Chuanfu
Tang, Kejun
Huang, Jizu
Yang, Chao
description Solving the Boltzmann-BGK equation with traditional numerical methods suffers from high computational and memory costs due to the curse of dimensionality. In this paper, we propose a novel accuracy-preserved tensor-train (APTT) method to efficiently solve the Boltzmann-BGK equation. A second-order finite difference scheme is applied to discretize the Boltzmann-BGK equation, resulting in a tensor algebraic system at each time step. Based on the low-rank TT representation, the tensor algebraic system is then approximated as a TT-based low-rank system, which is efficiently solved using the TT-modified alternating least-squares (TT-MALS) solver. Thanks to the low-rank TT representation, the APTT method can significantly reduce the computational and memory costs compared to traditional numerical methods. Theoretical analysis demonstrates that the APTT method maintains the same convergence rate as that of the finite difference scheme. The convergence rate and efficiency of the APTT method are validated by several benchmark test cases.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3058333202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3058333202</sourcerecordid><originalsourceid>FETCH-proquest_journals_30583332023</originalsourceid><addsrcrecordid>eNqNjMsKgkAUQIcgSMp_uNB6YJqbJe00ekAQLdzLoFdUdCZnxqC-Phd9QKuzOIczY4FE3PB4K-WChc61Qgi528sowoDdk0eWHSDRoIpitKp486clR_ZFJXjSzljurWo09ORrU0JlLPiaIDWd__RKa55ebkDDqHxj9IrNK9U5Cn9csvX5lB2v09QMIzmft2a0elI5iihGRCkk_ld9AXMMPYI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3058333202</pqid></control><display><type>article</type><title>APTT: An accuracy-preserved tensor-train method for the Boltzmann-BGK equation</title><source>Free E- Journals</source><creator>Zhu, Zhitao ; Xiao, Chuanfu ; Tang, Kejun ; Huang, Jizu ; Yang, Chao</creator><creatorcontrib>Zhu, Zhitao ; Xiao, Chuanfu ; Tang, Kejun ; Huang, Jizu ; Yang, Chao</creatorcontrib><description>Solving the Boltzmann-BGK equation with traditional numerical methods suffers from high computational and memory costs due to the curse of dimensionality. In this paper, we propose a novel accuracy-preserved tensor-train (APTT) method to efficiently solve the Boltzmann-BGK equation. A second-order finite difference scheme is applied to discretize the Boltzmann-BGK equation, resulting in a tensor algebraic system at each time step. Based on the low-rank TT representation, the tensor algebraic system is then approximated as a TT-based low-rank system, which is efficiently solved using the TT-modified alternating least-squares (TT-MALS) solver. Thanks to the low-rank TT representation, the APTT method can significantly reduce the computational and memory costs compared to traditional numerical methods. Theoretical analysis demonstrates that the APTT method maintains the same convergence rate as that of the finite difference scheme. The convergence rate and efficiency of the APTT method are validated by several benchmark test cases.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Convergence ; Cost analysis ; Finite difference method ; Mathematical analysis ; Numerical methods ; Representations ; Tensors</subject><ispartof>arXiv.org, 2024-05</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Zhu, Zhitao</creatorcontrib><creatorcontrib>Xiao, Chuanfu</creatorcontrib><creatorcontrib>Tang, Kejun</creatorcontrib><creatorcontrib>Huang, Jizu</creatorcontrib><creatorcontrib>Yang, Chao</creatorcontrib><title>APTT: An accuracy-preserved tensor-train method for the Boltzmann-BGK equation</title><title>arXiv.org</title><description>Solving the Boltzmann-BGK equation with traditional numerical methods suffers from high computational and memory costs due to the curse of dimensionality. In this paper, we propose a novel accuracy-preserved tensor-train (APTT) method to efficiently solve the Boltzmann-BGK equation. A second-order finite difference scheme is applied to discretize the Boltzmann-BGK equation, resulting in a tensor algebraic system at each time step. Based on the low-rank TT representation, the tensor algebraic system is then approximated as a TT-based low-rank system, which is efficiently solved using the TT-modified alternating least-squares (TT-MALS) solver. Thanks to the low-rank TT representation, the APTT method can significantly reduce the computational and memory costs compared to traditional numerical methods. Theoretical analysis demonstrates that the APTT method maintains the same convergence rate as that of the finite difference scheme. The convergence rate and efficiency of the APTT method are validated by several benchmark test cases.</description><subject>Convergence</subject><subject>Cost analysis</subject><subject>Finite difference method</subject><subject>Mathematical analysis</subject><subject>Numerical methods</subject><subject>Representations</subject><subject>Tensors</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjMsKgkAUQIcgSMp_uNB6YJqbJe00ekAQLdzLoFdUdCZnxqC-Phd9QKuzOIczY4FE3PB4K-WChc61Qgi528sowoDdk0eWHSDRoIpitKp486clR_ZFJXjSzljurWo09ORrU0JlLPiaIDWd__RKa55ebkDDqHxj9IrNK9U5Cn9csvX5lB2v09QMIzmft2a0elI5iihGRCkk_ld9AXMMPYI</recordid><startdate>20240521</startdate><enddate>20240521</enddate><creator>Zhu, Zhitao</creator><creator>Xiao, Chuanfu</creator><creator>Tang, Kejun</creator><creator>Huang, Jizu</creator><creator>Yang, Chao</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240521</creationdate><title>APTT: An accuracy-preserved tensor-train method for the Boltzmann-BGK equation</title><author>Zhu, Zhitao ; Xiao, Chuanfu ; Tang, Kejun ; Huang, Jizu ; Yang, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30583332023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Convergence</topic><topic>Cost analysis</topic><topic>Finite difference method</topic><topic>Mathematical analysis</topic><topic>Numerical methods</topic><topic>Representations</topic><topic>Tensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Zhitao</creatorcontrib><creatorcontrib>Xiao, Chuanfu</creatorcontrib><creatorcontrib>Tang, Kejun</creatorcontrib><creatorcontrib>Huang, Jizu</creatorcontrib><creatorcontrib>Yang, Chao</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Zhitao</au><au>Xiao, Chuanfu</au><au>Tang, Kejun</au><au>Huang, Jizu</au><au>Yang, Chao</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>APTT: An accuracy-preserved tensor-train method for the Boltzmann-BGK equation</atitle><jtitle>arXiv.org</jtitle><date>2024-05-21</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Solving the Boltzmann-BGK equation with traditional numerical methods suffers from high computational and memory costs due to the curse of dimensionality. In this paper, we propose a novel accuracy-preserved tensor-train (APTT) method to efficiently solve the Boltzmann-BGK equation. A second-order finite difference scheme is applied to discretize the Boltzmann-BGK equation, resulting in a tensor algebraic system at each time step. Based on the low-rank TT representation, the tensor algebraic system is then approximated as a TT-based low-rank system, which is efficiently solved using the TT-modified alternating least-squares (TT-MALS) solver. Thanks to the low-rank TT representation, the APTT method can significantly reduce the computational and memory costs compared to traditional numerical methods. Theoretical analysis demonstrates that the APTT method maintains the same convergence rate as that of the finite difference scheme. The convergence rate and efficiency of the APTT method are validated by several benchmark test cases.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_3058333202
source Free E- Journals
subjects Convergence
Cost analysis
Finite difference method
Mathematical analysis
Numerical methods
Representations
Tensors
title APTT: An accuracy-preserved tensor-train method for the Boltzmann-BGK equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T12%3A32%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=APTT:%20An%20accuracy-preserved%20tensor-train%20method%20for%20the%20Boltzmann-BGK%20equation&rft.jtitle=arXiv.org&rft.au=Zhu,%20Zhitao&rft.date=2024-05-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3058333202%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3058333202&rft_id=info:pmid/&rfr_iscdi=true