Robust Control of Synchronous Reluctance Motor Based on Automatic Disturbance Rejection

This article proposes the theoretical development and experimental application of the active disturbance rejection control (ADRC) to synchronous reluctance motor (SynRM) drives. The ADRC is a robust adaptive extension of the input-output feedback linearization control (FLC). It performs the exact li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE open journal of industry applications 2024, Vol.5, p.209-223
Hauptverfasser: Accetta, Angelo, Cirrincione, Maurizio, D'Ippolito, Filippo, Pucci, Marcello, Sferlazza, Antonino
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 223
container_issue
container_start_page 209
container_title IEEE open journal of industry applications
container_volume 5
creator Accetta, Angelo
Cirrincione, Maurizio
D'Ippolito, Filippo
Pucci, Marcello
Sferlazza, Antonino
description This article proposes the theoretical development and experimental application of the active disturbance rejection control (ADRC) to synchronous reluctance motor (SynRM) drives. The ADRC is a robust adaptive extension of the input-output feedback linearization control (FLC). It performs the exact linearization of the SynRM model by a suitable nonlinear transformation of the state based on the online estimation of the corrective term by the so-called extended state observers (ESO). Consequently, any unmodeled dynamics or uncertainty of the parameters are properly addressed. The control strategy has been verified successfully both in numerical simulations and experimentally on a suitably developed test set-up that provides the ADRC robustness versus parameters variations which cannot be obtained with other model-based nonlinear control techniques (e.g., FLC). Simulation results show the capability of the ADRC to maintain its dynamic performance, even in the presence of quick variations of the SynRM dynamic inductances. Experimental results confirm the robustness of the ADRC versus any model parameter uncertainty. The proposed ADRC has been experimentally compared with a previously developed FLC, in both a tuned and detuned working configuration, with the classic rotor oriented control, and with a finite state model predictive control (MPC), where speed control is integrated into the MPC. Experimental results show far better robustness versus any parameter variation.
doi_str_mv 10.1109/OJIA.2024.3399009
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_3058298425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10526420</ieee_id><doaj_id>oai_doaj_org_article_831fed2b559143cd985de6828f07ac5f</doaj_id><sourcerecordid>3058298425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-62ab485fe65a15974459cb19f20f31ebb152fa4200c99c1717cba4efcb4c47a83</originalsourceid><addsrcrecordid>eNpNkU9rGzEQxZeSQkOSD1DIQZCzHY3-eFdHx00bB4eA25KjkLSjdo2940rag79913EIOc0wvPfmwa-qvgKfAnBz-_y4nE8FF2oqpTGcm0_VuZgpNQGh4OzD_qW6ynnDORcaAIQ5r17W5Idc2IL6kmjLKLKfhz78TdTTkNkat0Morg_InqhQYncuY8uoZ_Oh0M6VLrBvXS5D8q-iNW4wlI76y-pzdNuMV2_zovr9_f7X4mGyev6xXMxXkyC1LpOZcF41OuJMO9CmVkqb4MFEwaME9B60iE4JzoMxAWqog3cKY_AqqNo18qJannJbchu7T93OpYMl19nXA6U_1qWx5RZtIyFiK7zWBpQMrWl0i7NGNJHXLug4Zt2csvaJ_g2Yi93QkPqxvpVcN8I0SuhRBSdVSJRzwvj-Fbg94rBHHPaIw77hGD3XJ0-HiB_0eiQjuPwPY-GF1w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3058298425</pqid></control><display><type>article</type><title>Robust Control of Synchronous Reluctance Motor Based on Automatic Disturbance Rejection</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Accetta, Angelo ; Cirrincione, Maurizio ; D'Ippolito, Filippo ; Pucci, Marcello ; Sferlazza, Antonino</creator><creatorcontrib>Accetta, Angelo ; Cirrincione, Maurizio ; D'Ippolito, Filippo ; Pucci, Marcello ; Sferlazza, Antonino</creatorcontrib><description>This article proposes the theoretical development and experimental application of the active disturbance rejection control (ADRC) to synchronous reluctance motor (SynRM) drives. The ADRC is a robust adaptive extension of the input-output feedback linearization control (FLC). It performs the exact linearization of the SynRM model by a suitable nonlinear transformation of the state based on the online estimation of the corrective term by the so-called extended state observers (ESO). Consequently, any unmodeled dynamics or uncertainty of the parameters are properly addressed. The control strategy has been verified successfully both in numerical simulations and experimentally on a suitably developed test set-up that provides the ADRC robustness versus parameters variations which cannot be obtained with other model-based nonlinear control techniques (e.g., FLC). Simulation results show the capability of the ADRC to maintain its dynamic performance, even in the presence of quick variations of the SynRM dynamic inductances. Experimental results confirm the robustness of the ADRC versus any model parameter uncertainty. The proposed ADRC has been experimentally compared with a previously developed FLC, in both a tuned and detuned working configuration, with the classic rotor oriented control, and with a finite state model predictive control (MPC), where speed control is integrated into the MPC. Experimental results show far better robustness versus any parameter variation.</description><identifier>ISSN: 2644-1241</identifier><identifier>EISSN: 2644-1241</identifier><identifier>DOI: 10.1109/OJIA.2024.3399009</identifier><identifier>CODEN: IOJIBK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Active control ; active disturbance rejection control (ADRC) ; Adaptive control ; Control systems ; Electric motors ; extended state observer (ESO) ; Feedback linearization ; feedback linearization control (FLC) ; Magnetic materials ; Nonlinear control ; Output feedback ; Parameter robustness ; Parameter uncertainty ; Photonic crystals ; Predictive control ; Rejection ; Robust control ; Rotors ; saturation effects ; Speed control ; State observers ; Stators ; Synchronous reluctance motor (SynRM) ; Torque ; Velocity control</subject><ispartof>IEEE open journal of industry applications, 2024, Vol.5, p.209-223</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c355t-62ab485fe65a15974459cb19f20f31ebb152fa4200c99c1717cba4efcb4c47a83</cites><orcidid>0000-0003-1886-1514 ; 0000-0003-2229-9210 ; 0000-0002-3324-4314 ; 0000-0003-1325-2648 ; 0000-0001-7313-3988</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10526420$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Accetta, Angelo</creatorcontrib><creatorcontrib>Cirrincione, Maurizio</creatorcontrib><creatorcontrib>D'Ippolito, Filippo</creatorcontrib><creatorcontrib>Pucci, Marcello</creatorcontrib><creatorcontrib>Sferlazza, Antonino</creatorcontrib><title>Robust Control of Synchronous Reluctance Motor Based on Automatic Disturbance Rejection</title><title>IEEE open journal of industry applications</title><addtitle>OJIA</addtitle><description>This article proposes the theoretical development and experimental application of the active disturbance rejection control (ADRC) to synchronous reluctance motor (SynRM) drives. The ADRC is a robust adaptive extension of the input-output feedback linearization control (FLC). It performs the exact linearization of the SynRM model by a suitable nonlinear transformation of the state based on the online estimation of the corrective term by the so-called extended state observers (ESO). Consequently, any unmodeled dynamics or uncertainty of the parameters are properly addressed. The control strategy has been verified successfully both in numerical simulations and experimentally on a suitably developed test set-up that provides the ADRC robustness versus parameters variations which cannot be obtained with other model-based nonlinear control techniques (e.g., FLC). Simulation results show the capability of the ADRC to maintain its dynamic performance, even in the presence of quick variations of the SynRM dynamic inductances. Experimental results confirm the robustness of the ADRC versus any model parameter uncertainty. The proposed ADRC has been experimentally compared with a previously developed FLC, in both a tuned and detuned working configuration, with the classic rotor oriented control, and with a finite state model predictive control (MPC), where speed control is integrated into the MPC. Experimental results show far better robustness versus any parameter variation.</description><subject>Active control</subject><subject>active disturbance rejection control (ADRC)</subject><subject>Adaptive control</subject><subject>Control systems</subject><subject>Electric motors</subject><subject>extended state observer (ESO)</subject><subject>Feedback linearization</subject><subject>feedback linearization control (FLC)</subject><subject>Magnetic materials</subject><subject>Nonlinear control</subject><subject>Output feedback</subject><subject>Parameter robustness</subject><subject>Parameter uncertainty</subject><subject>Photonic crystals</subject><subject>Predictive control</subject><subject>Rejection</subject><subject>Robust control</subject><subject>Rotors</subject><subject>saturation effects</subject><subject>Speed control</subject><subject>State observers</subject><subject>Stators</subject><subject>Synchronous reluctance motor (SynRM)</subject><subject>Torque</subject><subject>Velocity control</subject><issn>2644-1241</issn><issn>2644-1241</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9rGzEQxZeSQkOSD1DIQZCzHY3-eFdHx00bB4eA25KjkLSjdo2940rag79913EIOc0wvPfmwa-qvgKfAnBz-_y4nE8FF2oqpTGcm0_VuZgpNQGh4OzD_qW6ynnDORcaAIQ5r17W5Idc2IL6kmjLKLKfhz78TdTTkNkat0Morg_InqhQYncuY8uoZ_Oh0M6VLrBvXS5D8q-iNW4wlI76y-pzdNuMV2_zovr9_f7X4mGyev6xXMxXkyC1LpOZcF41OuJMO9CmVkqb4MFEwaME9B60iE4JzoMxAWqog3cKY_AqqNo18qJannJbchu7T93OpYMl19nXA6U_1qWx5RZtIyFiK7zWBpQMrWl0i7NGNJHXLug4Zt2csvaJ_g2Yi93QkPqxvpVcN8I0SuhRBSdVSJRzwvj-Fbg94rBHHPaIw77hGD3XJ0-HiB_0eiQjuPwPY-GF1w</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Accetta, Angelo</creator><creator>Cirrincione, Maurizio</creator><creator>D'Ippolito, Filippo</creator><creator>Pucci, Marcello</creator><creator>Sferlazza, Antonino</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1886-1514</orcidid><orcidid>https://orcid.org/0000-0003-2229-9210</orcidid><orcidid>https://orcid.org/0000-0002-3324-4314</orcidid><orcidid>https://orcid.org/0000-0003-1325-2648</orcidid><orcidid>https://orcid.org/0000-0001-7313-3988</orcidid></search><sort><creationdate>2024</creationdate><title>Robust Control of Synchronous Reluctance Motor Based on Automatic Disturbance Rejection</title><author>Accetta, Angelo ; Cirrincione, Maurizio ; D'Ippolito, Filippo ; Pucci, Marcello ; Sferlazza, Antonino</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-62ab485fe65a15974459cb19f20f31ebb152fa4200c99c1717cba4efcb4c47a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Active control</topic><topic>active disturbance rejection control (ADRC)</topic><topic>Adaptive control</topic><topic>Control systems</topic><topic>Electric motors</topic><topic>extended state observer (ESO)</topic><topic>Feedback linearization</topic><topic>feedback linearization control (FLC)</topic><topic>Magnetic materials</topic><topic>Nonlinear control</topic><topic>Output feedback</topic><topic>Parameter robustness</topic><topic>Parameter uncertainty</topic><topic>Photonic crystals</topic><topic>Predictive control</topic><topic>Rejection</topic><topic>Robust control</topic><topic>Rotors</topic><topic>saturation effects</topic><topic>Speed control</topic><topic>State observers</topic><topic>Stators</topic><topic>Synchronous reluctance motor (SynRM)</topic><topic>Torque</topic><topic>Velocity control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Accetta, Angelo</creatorcontrib><creatorcontrib>Cirrincione, Maurizio</creatorcontrib><creatorcontrib>D'Ippolito, Filippo</creatorcontrib><creatorcontrib>Pucci, Marcello</creatorcontrib><creatorcontrib>Sferlazza, Antonino</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE open journal of industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Accetta, Angelo</au><au>Cirrincione, Maurizio</au><au>D'Ippolito, Filippo</au><au>Pucci, Marcello</au><au>Sferlazza, Antonino</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Control of Synchronous Reluctance Motor Based on Automatic Disturbance Rejection</atitle><jtitle>IEEE open journal of industry applications</jtitle><stitle>OJIA</stitle><date>2024</date><risdate>2024</risdate><volume>5</volume><spage>209</spage><epage>223</epage><pages>209-223</pages><issn>2644-1241</issn><eissn>2644-1241</eissn><coden>IOJIBK</coden><abstract>This article proposes the theoretical development and experimental application of the active disturbance rejection control (ADRC) to synchronous reluctance motor (SynRM) drives. The ADRC is a robust adaptive extension of the input-output feedback linearization control (FLC). It performs the exact linearization of the SynRM model by a suitable nonlinear transformation of the state based on the online estimation of the corrective term by the so-called extended state observers (ESO). Consequently, any unmodeled dynamics or uncertainty of the parameters are properly addressed. The control strategy has been verified successfully both in numerical simulations and experimentally on a suitably developed test set-up that provides the ADRC robustness versus parameters variations which cannot be obtained with other model-based nonlinear control techniques (e.g., FLC). Simulation results show the capability of the ADRC to maintain its dynamic performance, even in the presence of quick variations of the SynRM dynamic inductances. Experimental results confirm the robustness of the ADRC versus any model parameter uncertainty. The proposed ADRC has been experimentally compared with a previously developed FLC, in both a tuned and detuned working configuration, with the classic rotor oriented control, and with a finite state model predictive control (MPC), where speed control is integrated into the MPC. Experimental results show far better robustness versus any parameter variation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/OJIA.2024.3399009</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1886-1514</orcidid><orcidid>https://orcid.org/0000-0003-2229-9210</orcidid><orcidid>https://orcid.org/0000-0002-3324-4314</orcidid><orcidid>https://orcid.org/0000-0003-1325-2648</orcidid><orcidid>https://orcid.org/0000-0001-7313-3988</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2644-1241
ispartof IEEE open journal of industry applications, 2024, Vol.5, p.209-223
issn 2644-1241
2644-1241
language eng
recordid cdi_proquest_journals_3058298425
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Active control
active disturbance rejection control (ADRC)
Adaptive control
Control systems
Electric motors
extended state observer (ESO)
Feedback linearization
feedback linearization control (FLC)
Magnetic materials
Nonlinear control
Output feedback
Parameter robustness
Parameter uncertainty
Photonic crystals
Predictive control
Rejection
Robust control
Rotors
saturation effects
Speed control
State observers
Stators
Synchronous reluctance motor (SynRM)
Torque
Velocity control
title Robust Control of Synchronous Reluctance Motor Based on Automatic Disturbance Rejection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T04%3A36%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Control%20of%20Synchronous%20Reluctance%20Motor%20Based%20on%20Automatic%20Disturbance%20Rejection&rft.jtitle=IEEE%20open%20journal%20of%20industry%20applications&rft.au=Accetta,%20Angelo&rft.date=2024&rft.volume=5&rft.spage=209&rft.epage=223&rft.pages=209-223&rft.issn=2644-1241&rft.eissn=2644-1241&rft.coden=IOJIBK&rft_id=info:doi/10.1109/OJIA.2024.3399009&rft_dat=%3Cproquest_ieee_%3E3058298425%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3058298425&rft_id=info:pmid/&rft_ieee_id=10526420&rft_doaj_id=oai_doaj_org_article_831fed2b559143cd985de6828f07ac5f&rfr_iscdi=true