Robust Control of Synchronous Reluctance Motor Based on Automatic Disturbance Rejection
This article proposes the theoretical development and experimental application of the active disturbance rejection control (ADRC) to synchronous reluctance motor (SynRM) drives. The ADRC is a robust adaptive extension of the input-output feedback linearization control (FLC). It performs the exact li...
Gespeichert in:
Veröffentlicht in: | IEEE open journal of industry applications 2024, Vol.5, p.209-223 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 223 |
---|---|
container_issue | |
container_start_page | 209 |
container_title | IEEE open journal of industry applications |
container_volume | 5 |
creator | Accetta, Angelo Cirrincione, Maurizio D'Ippolito, Filippo Pucci, Marcello Sferlazza, Antonino |
description | This article proposes the theoretical development and experimental application of the active disturbance rejection control (ADRC) to synchronous reluctance motor (SynRM) drives. The ADRC is a robust adaptive extension of the input-output feedback linearization control (FLC). It performs the exact linearization of the SynRM model by a suitable nonlinear transformation of the state based on the online estimation of the corrective term by the so-called extended state observers (ESO). Consequently, any unmodeled dynamics or uncertainty of the parameters are properly addressed. The control strategy has been verified successfully both in numerical simulations and experimentally on a suitably developed test set-up that provides the ADRC robustness versus parameters variations which cannot be obtained with other model-based nonlinear control techniques (e.g., FLC). Simulation results show the capability of the ADRC to maintain its dynamic performance, even in the presence of quick variations of the SynRM dynamic inductances. Experimental results confirm the robustness of the ADRC versus any model parameter uncertainty. The proposed ADRC has been experimentally compared with a previously developed FLC, in both a tuned and detuned working configuration, with the classic rotor oriented control, and with a finite state model predictive control (MPC), where speed control is integrated into the MPC. Experimental results show far better robustness versus any parameter variation. |
doi_str_mv | 10.1109/OJIA.2024.3399009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_3058298425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10526420</ieee_id><doaj_id>oai_doaj_org_article_831fed2b559143cd985de6828f07ac5f</doaj_id><sourcerecordid>3058298425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-62ab485fe65a15974459cb19f20f31ebb152fa4200c99c1717cba4efcb4c47a83</originalsourceid><addsrcrecordid>eNpNkU9rGzEQxZeSQkOSD1DIQZCzHY3-eFdHx00bB4eA25KjkLSjdo2940rag79913EIOc0wvPfmwa-qvgKfAnBz-_y4nE8FF2oqpTGcm0_VuZgpNQGh4OzD_qW6ynnDORcaAIQ5r17W5Idc2IL6kmjLKLKfhz78TdTTkNkat0Morg_InqhQYncuY8uoZ_Oh0M6VLrBvXS5D8q-iNW4wlI76y-pzdNuMV2_zovr9_f7X4mGyev6xXMxXkyC1LpOZcF41OuJMO9CmVkqb4MFEwaME9B60iE4JzoMxAWqog3cKY_AqqNo18qJannJbchu7T93OpYMl19nXA6U_1qWx5RZtIyFiK7zWBpQMrWl0i7NGNJHXLug4Zt2csvaJ_g2Yi93QkPqxvpVcN8I0SuhRBSdVSJRzwvj-Fbg94rBHHPaIw77hGD3XJ0-HiB_0eiQjuPwPY-GF1w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3058298425</pqid></control><display><type>article</type><title>Robust Control of Synchronous Reluctance Motor Based on Automatic Disturbance Rejection</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Accetta, Angelo ; Cirrincione, Maurizio ; D'Ippolito, Filippo ; Pucci, Marcello ; Sferlazza, Antonino</creator><creatorcontrib>Accetta, Angelo ; Cirrincione, Maurizio ; D'Ippolito, Filippo ; Pucci, Marcello ; Sferlazza, Antonino</creatorcontrib><description>This article proposes the theoretical development and experimental application of the active disturbance rejection control (ADRC) to synchronous reluctance motor (SynRM) drives. The ADRC is a robust adaptive extension of the input-output feedback linearization control (FLC). It performs the exact linearization of the SynRM model by a suitable nonlinear transformation of the state based on the online estimation of the corrective term by the so-called extended state observers (ESO). Consequently, any unmodeled dynamics or uncertainty of the parameters are properly addressed. The control strategy has been verified successfully both in numerical simulations and experimentally on a suitably developed test set-up that provides the ADRC robustness versus parameters variations which cannot be obtained with other model-based nonlinear control techniques (e.g., FLC). Simulation results show the capability of the ADRC to maintain its dynamic performance, even in the presence of quick variations of the SynRM dynamic inductances. Experimental results confirm the robustness of the ADRC versus any model parameter uncertainty. The proposed ADRC has been experimentally compared with a previously developed FLC, in both a tuned and detuned working configuration, with the classic rotor oriented control, and with a finite state model predictive control (MPC), where speed control is integrated into the MPC. Experimental results show far better robustness versus any parameter variation.</description><identifier>ISSN: 2644-1241</identifier><identifier>EISSN: 2644-1241</identifier><identifier>DOI: 10.1109/OJIA.2024.3399009</identifier><identifier>CODEN: IOJIBK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Active control ; active disturbance rejection control (ADRC) ; Adaptive control ; Control systems ; Electric motors ; extended state observer (ESO) ; Feedback linearization ; feedback linearization control (FLC) ; Magnetic materials ; Nonlinear control ; Output feedback ; Parameter robustness ; Parameter uncertainty ; Photonic crystals ; Predictive control ; Rejection ; Robust control ; Rotors ; saturation effects ; Speed control ; State observers ; Stators ; Synchronous reluctance motor (SynRM) ; Torque ; Velocity control</subject><ispartof>IEEE open journal of industry applications, 2024, Vol.5, p.209-223</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c355t-62ab485fe65a15974459cb19f20f31ebb152fa4200c99c1717cba4efcb4c47a83</cites><orcidid>0000-0003-1886-1514 ; 0000-0003-2229-9210 ; 0000-0002-3324-4314 ; 0000-0003-1325-2648 ; 0000-0001-7313-3988</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10526420$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Accetta, Angelo</creatorcontrib><creatorcontrib>Cirrincione, Maurizio</creatorcontrib><creatorcontrib>D'Ippolito, Filippo</creatorcontrib><creatorcontrib>Pucci, Marcello</creatorcontrib><creatorcontrib>Sferlazza, Antonino</creatorcontrib><title>Robust Control of Synchronous Reluctance Motor Based on Automatic Disturbance Rejection</title><title>IEEE open journal of industry applications</title><addtitle>OJIA</addtitle><description>This article proposes the theoretical development and experimental application of the active disturbance rejection control (ADRC) to synchronous reluctance motor (SynRM) drives. The ADRC is a robust adaptive extension of the input-output feedback linearization control (FLC). It performs the exact linearization of the SynRM model by a suitable nonlinear transformation of the state based on the online estimation of the corrective term by the so-called extended state observers (ESO). Consequently, any unmodeled dynamics or uncertainty of the parameters are properly addressed. The control strategy has been verified successfully both in numerical simulations and experimentally on a suitably developed test set-up that provides the ADRC robustness versus parameters variations which cannot be obtained with other model-based nonlinear control techniques (e.g., FLC). Simulation results show the capability of the ADRC to maintain its dynamic performance, even in the presence of quick variations of the SynRM dynamic inductances. Experimental results confirm the robustness of the ADRC versus any model parameter uncertainty. The proposed ADRC has been experimentally compared with a previously developed FLC, in both a tuned and detuned working configuration, with the classic rotor oriented control, and with a finite state model predictive control (MPC), where speed control is integrated into the MPC. Experimental results show far better robustness versus any parameter variation.</description><subject>Active control</subject><subject>active disturbance rejection control (ADRC)</subject><subject>Adaptive control</subject><subject>Control systems</subject><subject>Electric motors</subject><subject>extended state observer (ESO)</subject><subject>Feedback linearization</subject><subject>feedback linearization control (FLC)</subject><subject>Magnetic materials</subject><subject>Nonlinear control</subject><subject>Output feedback</subject><subject>Parameter robustness</subject><subject>Parameter uncertainty</subject><subject>Photonic crystals</subject><subject>Predictive control</subject><subject>Rejection</subject><subject>Robust control</subject><subject>Rotors</subject><subject>saturation effects</subject><subject>Speed control</subject><subject>State observers</subject><subject>Stators</subject><subject>Synchronous reluctance motor (SynRM)</subject><subject>Torque</subject><subject>Velocity control</subject><issn>2644-1241</issn><issn>2644-1241</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU9rGzEQxZeSQkOSD1DIQZCzHY3-eFdHx00bB4eA25KjkLSjdo2940rag79913EIOc0wvPfmwa-qvgKfAnBz-_y4nE8FF2oqpTGcm0_VuZgpNQGh4OzD_qW6ynnDORcaAIQ5r17W5Idc2IL6kmjLKLKfhz78TdTTkNkat0Morg_InqhQYncuY8uoZ_Oh0M6VLrBvXS5D8q-iNW4wlI76y-pzdNuMV2_zovr9_f7X4mGyev6xXMxXkyC1LpOZcF41OuJMO9CmVkqb4MFEwaME9B60iE4JzoMxAWqog3cKY_AqqNo18qJannJbchu7T93OpYMl19nXA6U_1qWx5RZtIyFiK7zWBpQMrWl0i7NGNJHXLug4Zt2csvaJ_g2Yi93QkPqxvpVcN8I0SuhRBSdVSJRzwvj-Fbg94rBHHPaIw77hGD3XJ0-HiB_0eiQjuPwPY-GF1w</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Accetta, Angelo</creator><creator>Cirrincione, Maurizio</creator><creator>D'Ippolito, Filippo</creator><creator>Pucci, Marcello</creator><creator>Sferlazza, Antonino</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1886-1514</orcidid><orcidid>https://orcid.org/0000-0003-2229-9210</orcidid><orcidid>https://orcid.org/0000-0002-3324-4314</orcidid><orcidid>https://orcid.org/0000-0003-1325-2648</orcidid><orcidid>https://orcid.org/0000-0001-7313-3988</orcidid></search><sort><creationdate>2024</creationdate><title>Robust Control of Synchronous Reluctance Motor Based on Automatic Disturbance Rejection</title><author>Accetta, Angelo ; Cirrincione, Maurizio ; D'Ippolito, Filippo ; Pucci, Marcello ; Sferlazza, Antonino</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-62ab485fe65a15974459cb19f20f31ebb152fa4200c99c1717cba4efcb4c47a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Active control</topic><topic>active disturbance rejection control (ADRC)</topic><topic>Adaptive control</topic><topic>Control systems</topic><topic>Electric motors</topic><topic>extended state observer (ESO)</topic><topic>Feedback linearization</topic><topic>feedback linearization control (FLC)</topic><topic>Magnetic materials</topic><topic>Nonlinear control</topic><topic>Output feedback</topic><topic>Parameter robustness</topic><topic>Parameter uncertainty</topic><topic>Photonic crystals</topic><topic>Predictive control</topic><topic>Rejection</topic><topic>Robust control</topic><topic>Rotors</topic><topic>saturation effects</topic><topic>Speed control</topic><topic>State observers</topic><topic>Stators</topic><topic>Synchronous reluctance motor (SynRM)</topic><topic>Torque</topic><topic>Velocity control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Accetta, Angelo</creatorcontrib><creatorcontrib>Cirrincione, Maurizio</creatorcontrib><creatorcontrib>D'Ippolito, Filippo</creatorcontrib><creatorcontrib>Pucci, Marcello</creatorcontrib><creatorcontrib>Sferlazza, Antonino</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE open journal of industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Accetta, Angelo</au><au>Cirrincione, Maurizio</au><au>D'Ippolito, Filippo</au><au>Pucci, Marcello</au><au>Sferlazza, Antonino</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Control of Synchronous Reluctance Motor Based on Automatic Disturbance Rejection</atitle><jtitle>IEEE open journal of industry applications</jtitle><stitle>OJIA</stitle><date>2024</date><risdate>2024</risdate><volume>5</volume><spage>209</spage><epage>223</epage><pages>209-223</pages><issn>2644-1241</issn><eissn>2644-1241</eissn><coden>IOJIBK</coden><abstract>This article proposes the theoretical development and experimental application of the active disturbance rejection control (ADRC) to synchronous reluctance motor (SynRM) drives. The ADRC is a robust adaptive extension of the input-output feedback linearization control (FLC). It performs the exact linearization of the SynRM model by a suitable nonlinear transformation of the state based on the online estimation of the corrective term by the so-called extended state observers (ESO). Consequently, any unmodeled dynamics or uncertainty of the parameters are properly addressed. The control strategy has been verified successfully both in numerical simulations and experimentally on a suitably developed test set-up that provides the ADRC robustness versus parameters variations which cannot be obtained with other model-based nonlinear control techniques (e.g., FLC). Simulation results show the capability of the ADRC to maintain its dynamic performance, even in the presence of quick variations of the SynRM dynamic inductances. Experimental results confirm the robustness of the ADRC versus any model parameter uncertainty. The proposed ADRC has been experimentally compared with a previously developed FLC, in both a tuned and detuned working configuration, with the classic rotor oriented control, and with a finite state model predictive control (MPC), where speed control is integrated into the MPC. Experimental results show far better robustness versus any parameter variation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/OJIA.2024.3399009</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1886-1514</orcidid><orcidid>https://orcid.org/0000-0003-2229-9210</orcidid><orcidid>https://orcid.org/0000-0002-3324-4314</orcidid><orcidid>https://orcid.org/0000-0003-1325-2648</orcidid><orcidid>https://orcid.org/0000-0001-7313-3988</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2644-1241 |
ispartof | IEEE open journal of industry applications, 2024, Vol.5, p.209-223 |
issn | 2644-1241 2644-1241 |
language | eng |
recordid | cdi_proquest_journals_3058298425 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Active control active disturbance rejection control (ADRC) Adaptive control Control systems Electric motors extended state observer (ESO) Feedback linearization feedback linearization control (FLC) Magnetic materials Nonlinear control Output feedback Parameter robustness Parameter uncertainty Photonic crystals Predictive control Rejection Robust control Rotors saturation effects Speed control State observers Stators Synchronous reluctance motor (SynRM) Torque Velocity control |
title | Robust Control of Synchronous Reluctance Motor Based on Automatic Disturbance Rejection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T04%3A36%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Control%20of%20Synchronous%20Reluctance%20Motor%20Based%20on%20Automatic%20Disturbance%20Rejection&rft.jtitle=IEEE%20open%20journal%20of%20industry%20applications&rft.au=Accetta,%20Angelo&rft.date=2024&rft.volume=5&rft.spage=209&rft.epage=223&rft.pages=209-223&rft.issn=2644-1241&rft.eissn=2644-1241&rft.coden=IOJIBK&rft_id=info:doi/10.1109/OJIA.2024.3399009&rft_dat=%3Cproquest_ieee_%3E3058298425%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3058298425&rft_id=info:pmid/&rft_ieee_id=10526420&rft_doaj_id=oai_doaj_org_article_831fed2b559143cd985de6828f07ac5f&rfr_iscdi=true |