Design and development of mobile anchor assisted node localization strategy using a Hybrid Electric-Coyote Optimization
As Wireless Sensor Networks (WSNs) offer essential support for several location-aware applications and protocols, localization is one of the principal methodologies in WSN. In the literature, the mobile anchor node is preferred over the static anchor node to handle the high overhead issue caused by...
Gespeichert in:
Veröffentlicht in: | Evolutionary intelligence 2024-06, Vol.17 (3), p.1405-1423 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1423 |
---|---|
container_issue | 3 |
container_start_page | 1405 |
container_title | Evolutionary intelligence |
container_volume | 17 |
creator | Sekhar Rao Rayavarapu, V. Ch Mahapatro, Arunanshu Kanti, R. Divya |
description | As Wireless Sensor Networks (WSNs) offer essential support for several location-aware applications and protocols, localization is one of the principal methodologies in WSN. In the literature, the mobile anchor node is preferred over the static anchor node to handle the high overhead issue caused by the larger number of anchor nodes. In recent years, the Mobile Anchor Node Assisted Localization (MANAL) problem has received significant attention in various research works, and path-planning techniques for localization using fewer anchor nodes have been implemented. However, recent MANAL breakthroughs in WSNs have provided ample research opportunities. The mobile anchor node is used in this paper to solve the node localization problem in WSN. The locations of the target nodes are determined using a Hybrid Electric-Coyote Optimization Algorithm (HE-COA), the mobile anchor node, and the virtual anchor nodes. The objective of the proposed localization is to minimize the distance error between actual node coordinates and estimated node coordinates. Various path trajectories are investigated in simulation to demonstrate the efficacy of the suggested work. The simulation results show that the proposed algorithm can reduce the localization error compared to the conventional models. |
doi_str_mv | 10.1007/s12065-023-00834-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3057774107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3057774107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-a272fae56e6d069ef06761046ed60181151e26b721575cd1e89cd5c55e1083633</originalsourceid><addsrcrecordid>eNp9kLFOwzAQhiMEEqXwAkyWmANnJ7aTEZVCkSqxwGy59qW4SuJgu6Dy9ARawcZ0J93__Sd9WXZJ4ZoCyJtIGQieAytygKooc3aUTWglypzXVB7_7lCfZmcxbgAEA1lOso87jG7dE91bYvEdWz902CfiG9L5lWtxvJhXH4iO0cWElvTeImm90a371Mn5nsQUdML1jmyj69dEk8VuFZwl8xZNCs7kM7_zCcnTkFx3gM6zk0a3ES8Oc5q93M-fZ4t8-fTwOLtd5oZJSLlmkjUauUBhQdTYgJCCQinQCqAVpZwiEyvJKJfcWIpVbSw3nCMdNYiimGZX-94h-LctxqQ2fhv68aUqgEspSwpyTLF9ygQfY8BGDcF1OuwUBfUtWO0Fq1Gw-hGs2AgVeyiO4X6N4a_6H-oL2jp_Dw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3057774107</pqid></control><display><type>article</type><title>Design and development of mobile anchor assisted node localization strategy using a Hybrid Electric-Coyote Optimization</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sekhar Rao Rayavarapu, V. Ch ; Mahapatro, Arunanshu ; Kanti, R. Divya</creator><creatorcontrib>Sekhar Rao Rayavarapu, V. Ch ; Mahapatro, Arunanshu ; Kanti, R. Divya</creatorcontrib><description>As Wireless Sensor Networks (WSNs) offer essential support for several location-aware applications and protocols, localization is one of the principal methodologies in WSN. In the literature, the mobile anchor node is preferred over the static anchor node to handle the high overhead issue caused by the larger number of anchor nodes. In recent years, the Mobile Anchor Node Assisted Localization (MANAL) problem has received significant attention in various research works, and path-planning techniques for localization using fewer anchor nodes have been implemented. However, recent MANAL breakthroughs in WSNs have provided ample research opportunities. The mobile anchor node is used in this paper to solve the node localization problem in WSN. The locations of the target nodes are determined using a Hybrid Electric-Coyote Optimization Algorithm (HE-COA), the mobile anchor node, and the virtual anchor nodes. The objective of the proposed localization is to minimize the distance error between actual node coordinates and estimated node coordinates. Various path trajectories are investigated in simulation to demonstrate the efficacy of the suggested work. The simulation results show that the proposed algorithm can reduce the localization error compared to the conventional models.</description><identifier>ISSN: 1864-5909</identifier><identifier>EISSN: 1864-5917</identifier><identifier>DOI: 10.1007/s12065-023-00834-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Applications of Mathematics ; Artificial Intelligence ; Bioinformatics ; Control ; Engineering ; Localization ; Mathematical and Computational Engineering ; Mechatronics ; Nodes ; Optimization ; Path planning ; Research Paper ; Robotics ; Statistical Physics and Dynamical Systems ; Wireless sensor networks</subject><ispartof>Evolutionary intelligence, 2024-06, Vol.17 (3), p.1405-1423</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-a272fae56e6d069ef06761046ed60181151e26b721575cd1e89cd5c55e1083633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12065-023-00834-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12065-023-00834-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Sekhar Rao Rayavarapu, V. Ch</creatorcontrib><creatorcontrib>Mahapatro, Arunanshu</creatorcontrib><creatorcontrib>Kanti, R. Divya</creatorcontrib><title>Design and development of mobile anchor assisted node localization strategy using a Hybrid Electric-Coyote Optimization</title><title>Evolutionary intelligence</title><addtitle>Evol. Intel</addtitle><description>As Wireless Sensor Networks (WSNs) offer essential support for several location-aware applications and protocols, localization is one of the principal methodologies in WSN. In the literature, the mobile anchor node is preferred over the static anchor node to handle the high overhead issue caused by the larger number of anchor nodes. In recent years, the Mobile Anchor Node Assisted Localization (MANAL) problem has received significant attention in various research works, and path-planning techniques for localization using fewer anchor nodes have been implemented. However, recent MANAL breakthroughs in WSNs have provided ample research opportunities. The mobile anchor node is used in this paper to solve the node localization problem in WSN. The locations of the target nodes are determined using a Hybrid Electric-Coyote Optimization Algorithm (HE-COA), the mobile anchor node, and the virtual anchor nodes. The objective of the proposed localization is to minimize the distance error between actual node coordinates and estimated node coordinates. Various path trajectories are investigated in simulation to demonstrate the efficacy of the suggested work. The simulation results show that the proposed algorithm can reduce the localization error compared to the conventional models.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Artificial Intelligence</subject><subject>Bioinformatics</subject><subject>Control</subject><subject>Engineering</subject><subject>Localization</subject><subject>Mathematical and Computational Engineering</subject><subject>Mechatronics</subject><subject>Nodes</subject><subject>Optimization</subject><subject>Path planning</subject><subject>Research Paper</subject><subject>Robotics</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Wireless sensor networks</subject><issn>1864-5909</issn><issn>1864-5917</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAQhiMEEqXwAkyWmANnJ7aTEZVCkSqxwGy59qW4SuJgu6Dy9ARawcZ0J93__Sd9WXZJ4ZoCyJtIGQieAytygKooc3aUTWglypzXVB7_7lCfZmcxbgAEA1lOso87jG7dE91bYvEdWz902CfiG9L5lWtxvJhXH4iO0cWElvTeImm90a371Mn5nsQUdML1jmyj69dEk8VuFZwl8xZNCs7kM7_zCcnTkFx3gM6zk0a3ES8Oc5q93M-fZ4t8-fTwOLtd5oZJSLlmkjUauUBhQdTYgJCCQinQCqAVpZwiEyvJKJfcWIpVbSw3nCMdNYiimGZX-94h-LctxqQ2fhv68aUqgEspSwpyTLF9ygQfY8BGDcF1OuwUBfUtWO0Fq1Gw-hGs2AgVeyiO4X6N4a_6H-oL2jp_Dw</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Sekhar Rao Rayavarapu, V. Ch</creator><creator>Mahapatro, Arunanshu</creator><creator>Kanti, R. Divya</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240601</creationdate><title>Design and development of mobile anchor assisted node localization strategy using a Hybrid Electric-Coyote Optimization</title><author>Sekhar Rao Rayavarapu, V. Ch ; Mahapatro, Arunanshu ; Kanti, R. Divya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-a272fae56e6d069ef06761046ed60181151e26b721575cd1e89cd5c55e1083633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Artificial Intelligence</topic><topic>Bioinformatics</topic><topic>Control</topic><topic>Engineering</topic><topic>Localization</topic><topic>Mathematical and Computational Engineering</topic><topic>Mechatronics</topic><topic>Nodes</topic><topic>Optimization</topic><topic>Path planning</topic><topic>Research Paper</topic><topic>Robotics</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sekhar Rao Rayavarapu, V. Ch</creatorcontrib><creatorcontrib>Mahapatro, Arunanshu</creatorcontrib><creatorcontrib>Kanti, R. Divya</creatorcontrib><collection>CrossRef</collection><jtitle>Evolutionary intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sekhar Rao Rayavarapu, V. Ch</au><au>Mahapatro, Arunanshu</au><au>Kanti, R. Divya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and development of mobile anchor assisted node localization strategy using a Hybrid Electric-Coyote Optimization</atitle><jtitle>Evolutionary intelligence</jtitle><stitle>Evol. Intel</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>17</volume><issue>3</issue><spage>1405</spage><epage>1423</epage><pages>1405-1423</pages><issn>1864-5909</issn><eissn>1864-5917</eissn><abstract>As Wireless Sensor Networks (WSNs) offer essential support for several location-aware applications and protocols, localization is one of the principal methodologies in WSN. In the literature, the mobile anchor node is preferred over the static anchor node to handle the high overhead issue caused by the larger number of anchor nodes. In recent years, the Mobile Anchor Node Assisted Localization (MANAL) problem has received significant attention in various research works, and path-planning techniques for localization using fewer anchor nodes have been implemented. However, recent MANAL breakthroughs in WSNs have provided ample research opportunities. The mobile anchor node is used in this paper to solve the node localization problem in WSN. The locations of the target nodes are determined using a Hybrid Electric-Coyote Optimization Algorithm (HE-COA), the mobile anchor node, and the virtual anchor nodes. The objective of the proposed localization is to minimize the distance error between actual node coordinates and estimated node coordinates. Various path trajectories are investigated in simulation to demonstrate the efficacy of the suggested work. The simulation results show that the proposed algorithm can reduce the localization error compared to the conventional models.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12065-023-00834-2</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1864-5909 |
ispartof | Evolutionary intelligence, 2024-06, Vol.17 (3), p.1405-1423 |
issn | 1864-5909 1864-5917 |
language | eng |
recordid | cdi_proquest_journals_3057774107 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Applications of Mathematics Artificial Intelligence Bioinformatics Control Engineering Localization Mathematical and Computational Engineering Mechatronics Nodes Optimization Path planning Research Paper Robotics Statistical Physics and Dynamical Systems Wireless sensor networks |
title | Design and development of mobile anchor assisted node localization strategy using a Hybrid Electric-Coyote Optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A47%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20development%20of%20mobile%20anchor%20assisted%20node%20localization%20strategy%20using%20a%20Hybrid%20Electric-Coyote%20Optimization&rft.jtitle=Evolutionary%20intelligence&rft.au=Sekhar%20Rao%20Rayavarapu,%20V.%20Ch&rft.date=2024-06-01&rft.volume=17&rft.issue=3&rft.spage=1405&rft.epage=1423&rft.pages=1405-1423&rft.issn=1864-5909&rft.eissn=1864-5917&rft_id=info:doi/10.1007/s12065-023-00834-2&rft_dat=%3Cproquest_cross%3E3057774107%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3057774107&rft_id=info:pmid/&rfr_iscdi=true |