Core–Shell Structured Flame‐Retardant Separator Mediated with Metal–Organic Framework Armor Enables Self‐Acceleration Mechanism for Dendrite‐Free and Safer Lithium Metal Batteries

Developing an optimal multifunctional flame‐retardant separator is crucial for enhancing lithium metal battery (LMB) safety. However, this task poses challenges due to the inferior electrochemical stability and limited ion transport of most fire retardant‐based coatings. In this work, the core–shell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-05, Vol.34 (21), p.n/a
Hauptverfasser: Li, Dixiong, Ouyang, Yuan, Xiao, Yingbo, Xie, Yufeng, Zeng, Qinghan, Yu, Siting, Zheng, Cheng, Zhang, Qi, Huang, Shaoming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 21
container_start_page
container_title Advanced functional materials
container_volume 34
creator Li, Dixiong
Ouyang, Yuan
Xiao, Yingbo
Xie, Yufeng
Zeng, Qinghan
Yu, Siting
Zheng, Cheng
Zhang, Qi
Huang, Shaoming
description Developing an optimal multifunctional flame‐retardant separator is crucial for enhancing lithium metal battery (LMB) safety. However, this task poses challenges due to the inferior electrochemical stability and limited ion transport of most fire retardant‐based coatings. In this work, the core–shell structured flame‐retardant matrix is elaborated by in situ growing a thin layer of MOF armor onto flame‐retardant ammonium polyphosphate (APP) bulk materials to further manufacture a multifunctional separator (APP@ZIF‐8@PP). The MOF armor acts as both a protector and ion transport regulator, effectively safeguarding APP from side reactions and optimizing the efficiency, selectivity, and deposition behavior of ion flux. Notably, such separator demonstrates a self‐acceleration mechanism, i.e., APP and ZIF‐8 can promote the decomposition of each other mutually, activating the flame‐retardant effect at lower temperatures. Additionally, APP@ZIF‐8 aids in forming a dense char layer during pyrolysis, which can insulate against the transfer of oxygen and heat. Finally, the LMBs assembled with such a multifunctional separator exhibit heightened safety and optimized electrochemical performance. This work provides valuable insights into the development of advanced porous materials‐based flame‐retardant separators, contributing to safer and more reliable energy storage devices. Core–shell structured APP@MOF matrix is constructed by in situ growing MOF armor onto flame‐retardant APP to manufacture multifunctional separator further. The MOF serves as protector and ion flux rectifier. Moreover, the self‐acceleration mechanism of APP@MOF allows triggering flame retardancy at lower temperatures and forming a dense char layer. These merits afford lithium metal batteries with higher safety and optimized electrochemical performance.
doi_str_mv 10.1002/adfm.202314296
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3057578479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3057578479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3176-c5279d564fe77a81a8c9f2678efd605e2ed7216b1d76f17b0be4eae73515e2a83</originalsourceid><addsrcrecordid>eNqFkcGO0zAQhiMEEsvClbMlzi22k9jJsXQ3gNTVShQkbtHUHlMvTlLGjqq98QhIPA8vw5Pgqmg5cvJY833_f5iieCn4UnAuX4N1w1JyWYpKtupRcSGUUIuSy-bxwyw-Py2exXjHudC6rC6KX-uJ8Pf3n9s9hsC2iWaTZkLLugBDXvz4gAnIwpjYFg9AkCZiN2g9pAwdfdrnX4KQI27pC4zesI6yeZzoK1vRkOnrEXYBY_aDy4ErYzBgDvLTmF2zz1IcmMvkFY6WfDrVdoTIYLRsCw6JbXKRn4dzF3sDKSF5jM-LJw5CxBd_38viU3f9cf1usbl9-3692ixMKbRamFrq1taqcqg1NAIa0zqpdIPOKl6jRKulUDthtXJC7_gOKwTUZS3yEprysnh1zj3Q9G3GmPq7aaYxV_Ylr3Wtm0q3mVqeKUNTjISuP5AfgO57wfvTifrTifqHE2WhPQtHH_D-P3S_uupu_rl_AIqZngs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3057578479</pqid></control><display><type>article</type><title>Core–Shell Structured Flame‐Retardant Separator Mediated with Metal–Organic Framework Armor Enables Self‐Acceleration Mechanism for Dendrite‐Free and Safer Lithium Metal Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Dixiong ; Ouyang, Yuan ; Xiao, Yingbo ; Xie, Yufeng ; Zeng, Qinghan ; Yu, Siting ; Zheng, Cheng ; Zhang, Qi ; Huang, Shaoming</creator><creatorcontrib>Li, Dixiong ; Ouyang, Yuan ; Xiao, Yingbo ; Xie, Yufeng ; Zeng, Qinghan ; Yu, Siting ; Zheng, Cheng ; Zhang, Qi ; Huang, Shaoming</creatorcontrib><description>Developing an optimal multifunctional flame‐retardant separator is crucial for enhancing lithium metal battery (LMB) safety. However, this task poses challenges due to the inferior electrochemical stability and limited ion transport of most fire retardant‐based coatings. In this work, the core–shell structured flame‐retardant matrix is elaborated by in situ growing a thin layer of MOF armor onto flame‐retardant ammonium polyphosphate (APP) bulk materials to further manufacture a multifunctional separator (APP@ZIF‐8@PP). The MOF armor acts as both a protector and ion transport regulator, effectively safeguarding APP from side reactions and optimizing the efficiency, selectivity, and deposition behavior of ion flux. Notably, such separator demonstrates a self‐acceleration mechanism, i.e., APP and ZIF‐8 can promote the decomposition of each other mutually, activating the flame‐retardant effect at lower temperatures. Additionally, APP@ZIF‐8 aids in forming a dense char layer during pyrolysis, which can insulate against the transfer of oxygen and heat. Finally, the LMBs assembled with such a multifunctional separator exhibit heightened safety and optimized electrochemical performance. This work provides valuable insights into the development of advanced porous materials‐based flame‐retardant separators, contributing to safer and more reliable energy storage devices. Core–shell structured APP@MOF matrix is constructed by in situ growing MOF armor onto flame‐retardant APP to manufacture multifunctional separator further. The MOF serves as protector and ion flux rectifier. Moreover, the self‐acceleration mechanism of APP@MOF allows triggering flame retardancy at lower temperatures and forming a dense char layer. These merits afford lithium metal batteries with higher safety and optimized electrochemical performance.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202314296</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Acceleration ; Armor ; Core-shell structure ; Electrochemical analysis ; Energy storage ; Flame retardants ; flame‐retardant separators ; Ion flux ; Ion transport ; Lithium batteries ; lithium metal batteries ; Metal-organic frameworks ; Optimization ; Porous materials ; Product safety ; Pyrolysis ; safety ; Separators</subject><ispartof>Advanced functional materials, 2024-05, Vol.34 (21), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3176-c5279d564fe77a81a8c9f2678efd605e2ed7216b1d76f17b0be4eae73515e2a83</citedby><cites>FETCH-LOGICAL-c3176-c5279d564fe77a81a8c9f2678efd605e2ed7216b1d76f17b0be4eae73515e2a83</cites><orcidid>0000-0003-3773-7981 ; 0000-0003-0242-1143</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202314296$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202314296$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Li, Dixiong</creatorcontrib><creatorcontrib>Ouyang, Yuan</creatorcontrib><creatorcontrib>Xiao, Yingbo</creatorcontrib><creatorcontrib>Xie, Yufeng</creatorcontrib><creatorcontrib>Zeng, Qinghan</creatorcontrib><creatorcontrib>Yu, Siting</creatorcontrib><creatorcontrib>Zheng, Cheng</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Huang, Shaoming</creatorcontrib><title>Core–Shell Structured Flame‐Retardant Separator Mediated with Metal–Organic Framework Armor Enables Self‐Acceleration Mechanism for Dendrite‐Free and Safer Lithium Metal Batteries</title><title>Advanced functional materials</title><description>Developing an optimal multifunctional flame‐retardant separator is crucial for enhancing lithium metal battery (LMB) safety. However, this task poses challenges due to the inferior electrochemical stability and limited ion transport of most fire retardant‐based coatings. In this work, the core–shell structured flame‐retardant matrix is elaborated by in situ growing a thin layer of MOF armor onto flame‐retardant ammonium polyphosphate (APP) bulk materials to further manufacture a multifunctional separator (APP@ZIF‐8@PP). The MOF armor acts as both a protector and ion transport regulator, effectively safeguarding APP from side reactions and optimizing the efficiency, selectivity, and deposition behavior of ion flux. Notably, such separator demonstrates a self‐acceleration mechanism, i.e., APP and ZIF‐8 can promote the decomposition of each other mutually, activating the flame‐retardant effect at lower temperatures. Additionally, APP@ZIF‐8 aids in forming a dense char layer during pyrolysis, which can insulate against the transfer of oxygen and heat. Finally, the LMBs assembled with such a multifunctional separator exhibit heightened safety and optimized electrochemical performance. This work provides valuable insights into the development of advanced porous materials‐based flame‐retardant separators, contributing to safer and more reliable energy storage devices. Core–shell structured APP@MOF matrix is constructed by in situ growing MOF armor onto flame‐retardant APP to manufacture multifunctional separator further. The MOF serves as protector and ion flux rectifier. Moreover, the self‐acceleration mechanism of APP@MOF allows triggering flame retardancy at lower temperatures and forming a dense char layer. These merits afford lithium metal batteries with higher safety and optimized electrochemical performance.</description><subject>Acceleration</subject><subject>Armor</subject><subject>Core-shell structure</subject><subject>Electrochemical analysis</subject><subject>Energy storage</subject><subject>Flame retardants</subject><subject>flame‐retardant separators</subject><subject>Ion flux</subject><subject>Ion transport</subject><subject>Lithium batteries</subject><subject>lithium metal batteries</subject><subject>Metal-organic frameworks</subject><subject>Optimization</subject><subject>Porous materials</subject><subject>Product safety</subject><subject>Pyrolysis</subject><subject>safety</subject><subject>Separators</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkcGO0zAQhiMEEsvClbMlzi22k9jJsXQ3gNTVShQkbtHUHlMvTlLGjqq98QhIPA8vw5Pgqmg5cvJY833_f5iieCn4UnAuX4N1w1JyWYpKtupRcSGUUIuSy-bxwyw-Py2exXjHudC6rC6KX-uJ8Pf3n9s9hsC2iWaTZkLLugBDXvz4gAnIwpjYFg9AkCZiN2g9pAwdfdrnX4KQI27pC4zesI6yeZzoK1vRkOnrEXYBY_aDy4ErYzBgDvLTmF2zz1IcmMvkFY6WfDrVdoTIYLRsCw6JbXKRn4dzF3sDKSF5jM-LJw5CxBd_38viU3f9cf1usbl9-3692ixMKbRamFrq1taqcqg1NAIa0zqpdIPOKl6jRKulUDthtXJC7_gOKwTUZS3yEprysnh1zj3Q9G3GmPq7aaYxV_Ylr3Wtm0q3mVqeKUNTjISuP5AfgO57wfvTifrTifqHE2WhPQtHH_D-P3S_uupu_rl_AIqZngs</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Li, Dixiong</creator><creator>Ouyang, Yuan</creator><creator>Xiao, Yingbo</creator><creator>Xie, Yufeng</creator><creator>Zeng, Qinghan</creator><creator>Yu, Siting</creator><creator>Zheng, Cheng</creator><creator>Zhang, Qi</creator><creator>Huang, Shaoming</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3773-7981</orcidid><orcidid>https://orcid.org/0000-0003-0242-1143</orcidid></search><sort><creationdate>20240501</creationdate><title>Core–Shell Structured Flame‐Retardant Separator Mediated with Metal–Organic Framework Armor Enables Self‐Acceleration Mechanism for Dendrite‐Free and Safer Lithium Metal Batteries</title><author>Li, Dixiong ; Ouyang, Yuan ; Xiao, Yingbo ; Xie, Yufeng ; Zeng, Qinghan ; Yu, Siting ; Zheng, Cheng ; Zhang, Qi ; Huang, Shaoming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3176-c5279d564fe77a81a8c9f2678efd605e2ed7216b1d76f17b0be4eae73515e2a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acceleration</topic><topic>Armor</topic><topic>Core-shell structure</topic><topic>Electrochemical analysis</topic><topic>Energy storage</topic><topic>Flame retardants</topic><topic>flame‐retardant separators</topic><topic>Ion flux</topic><topic>Ion transport</topic><topic>Lithium batteries</topic><topic>lithium metal batteries</topic><topic>Metal-organic frameworks</topic><topic>Optimization</topic><topic>Porous materials</topic><topic>Product safety</topic><topic>Pyrolysis</topic><topic>safety</topic><topic>Separators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Dixiong</creatorcontrib><creatorcontrib>Ouyang, Yuan</creatorcontrib><creatorcontrib>Xiao, Yingbo</creatorcontrib><creatorcontrib>Xie, Yufeng</creatorcontrib><creatorcontrib>Zeng, Qinghan</creatorcontrib><creatorcontrib>Yu, Siting</creatorcontrib><creatorcontrib>Zheng, Cheng</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Huang, Shaoming</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Dixiong</au><au>Ouyang, Yuan</au><au>Xiao, Yingbo</au><au>Xie, Yufeng</au><au>Zeng, Qinghan</au><au>Yu, Siting</au><au>Zheng, Cheng</au><au>Zhang, Qi</au><au>Huang, Shaoming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Core–Shell Structured Flame‐Retardant Separator Mediated with Metal–Organic Framework Armor Enables Self‐Acceleration Mechanism for Dendrite‐Free and Safer Lithium Metal Batteries</atitle><jtitle>Advanced functional materials</jtitle><date>2024-05-01</date><risdate>2024</risdate><volume>34</volume><issue>21</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Developing an optimal multifunctional flame‐retardant separator is crucial for enhancing lithium metal battery (LMB) safety. However, this task poses challenges due to the inferior electrochemical stability and limited ion transport of most fire retardant‐based coatings. In this work, the core–shell structured flame‐retardant matrix is elaborated by in situ growing a thin layer of MOF armor onto flame‐retardant ammonium polyphosphate (APP) bulk materials to further manufacture a multifunctional separator (APP@ZIF‐8@PP). The MOF armor acts as both a protector and ion transport regulator, effectively safeguarding APP from side reactions and optimizing the efficiency, selectivity, and deposition behavior of ion flux. Notably, such separator demonstrates a self‐acceleration mechanism, i.e., APP and ZIF‐8 can promote the decomposition of each other mutually, activating the flame‐retardant effect at lower temperatures. Additionally, APP@ZIF‐8 aids in forming a dense char layer during pyrolysis, which can insulate against the transfer of oxygen and heat. Finally, the LMBs assembled with such a multifunctional separator exhibit heightened safety and optimized electrochemical performance. This work provides valuable insights into the development of advanced porous materials‐based flame‐retardant separators, contributing to safer and more reliable energy storage devices. Core–shell structured APP@MOF matrix is constructed by in situ growing MOF armor onto flame‐retardant APP to manufacture multifunctional separator further. The MOF serves as protector and ion flux rectifier. Moreover, the self‐acceleration mechanism of APP@MOF allows triggering flame retardancy at lower temperatures and forming a dense char layer. These merits afford lithium metal batteries with higher safety and optimized electrochemical performance.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202314296</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3773-7981</orcidid><orcidid>https://orcid.org/0000-0003-0242-1143</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-05, Vol.34 (21), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_3057578479
source Wiley Online Library Journals Frontfile Complete
subjects Acceleration
Armor
Core-shell structure
Electrochemical analysis
Energy storage
Flame retardants
flame‐retardant separators
Ion flux
Ion transport
Lithium batteries
lithium metal batteries
Metal-organic frameworks
Optimization
Porous materials
Product safety
Pyrolysis
safety
Separators
title Core–Shell Structured Flame‐Retardant Separator Mediated with Metal–Organic Framework Armor Enables Self‐Acceleration Mechanism for Dendrite‐Free and Safer Lithium Metal Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T16%3A39%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Core%E2%80%93Shell%20Structured%20Flame%E2%80%90Retardant%20Separator%20Mediated%20with%20Metal%E2%80%93Organic%20Framework%20Armor%20Enables%20Self%E2%80%90Acceleration%20Mechanism%20for%20Dendrite%E2%80%90Free%20and%20Safer%20Lithium%20Metal%20Batteries&rft.jtitle=Advanced%20functional%20materials&rft.au=Li,%20Dixiong&rft.date=2024-05-01&rft.volume=34&rft.issue=21&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202314296&rft_dat=%3Cproquest_cross%3E3057578479%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3057578479&rft_id=info:pmid/&rfr_iscdi=true