Product representation of perfect cubes

Let \(F_{k,d}(n)\) be the maximal size of a set \({A}\subseteq [n]\) such that the equation \[a_1a_2\dots a_k=x^d, \; a_1

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-05
Hauptverfasser: Zsigmond, György Fleiner, Juhász, Márk Hunor, Kövér, Blanka, Péter Pál Pach, Sándor, Csaba
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Zsigmond, György Fleiner
Juhász, Márk Hunor
Kövér, Blanka
Péter Pál Pach
Sándor, Csaba
description Let \(F_{k,d}(n)\) be the maximal size of a set \({A}\subseteq [n]\) such that the equation \[a_1a_2\dots a_k=x^d, \; a_1
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3057511262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3057511262</sourcerecordid><originalsourceid>FETCH-proquest_journals_30575112623</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQDyjKTylNLlEoSi0oSi1OzStJLMnMz1PIT1MoSC1KSwXKJJcmpRbzMLCmJeYUp_JCaW4GZTfXEGcP3YKi_MLS1OKS-Kz80qI8oFS8sYGpuamhoZGZkTFxqgCeXDAQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3057511262</pqid></control><display><type>article</type><title>Product representation of perfect cubes</title><source>Free E- Journals</source><creator>Zsigmond, György Fleiner ; Juhász, Márk Hunor ; Kövér, Blanka ; Péter Pál Pach ; Sándor, Csaba</creator><creatorcontrib>Zsigmond, György Fleiner ; Juhász, Márk Hunor ; Kövér, Blanka ; Péter Pál Pach ; Sándor, Csaba</creatorcontrib><description>Let \(F_{k,d}(n)\) be the maximal size of a set \({A}\subseteq [n]\) such that the equation \[a_1a_2\dots a_k=x^d, \; a_1&lt;a_2&lt;\ldots&lt;a_k\] has no solution with \(a_1,a_2,\ldots,a_k\in {A}\) and integer \(x\). Erdős, Sárk\"ozy and T. Sós studied \(F_{k,2}\), and gave bounds when \(k=2,3,4,6\) and also in the general case. We study the problem for \(d=3\), and provide bounds for \(k=2,3,4,6\) and \(9\), furthermore, in the general case, as well. In particular, we refute an 18 years old conjecture of Verstra\"ete. We also introduce another function \(f_{k,d}\) closely related to \(F_{k,d}\): While the original problem requires \(a_1, \ldots , a_k\) to all be distinct, we can relax this and only require that the multiset of the \(a_i\)'s cannot be partitioned into \(d\)-tuples where each \(d\)-tuple consists of \(d\) copies of the same number.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cubes</subject><ispartof>arXiv.org, 2024-05</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Zsigmond, György Fleiner</creatorcontrib><creatorcontrib>Juhász, Márk Hunor</creatorcontrib><creatorcontrib>Kövér, Blanka</creatorcontrib><creatorcontrib>Péter Pál Pach</creatorcontrib><creatorcontrib>Sándor, Csaba</creatorcontrib><title>Product representation of perfect cubes</title><title>arXiv.org</title><description>Let \(F_{k,d}(n)\) be the maximal size of a set \({A}\subseteq [n]\) such that the equation \[a_1a_2\dots a_k=x^d, \; a_1&lt;a_2&lt;\ldots&lt;a_k\] has no solution with \(a_1,a_2,\ldots,a_k\in {A}\) and integer \(x\). Erdős, Sárk\"ozy and T. Sós studied \(F_{k,2}\), and gave bounds when \(k=2,3,4,6\) and also in the general case. We study the problem for \(d=3\), and provide bounds for \(k=2,3,4,6\) and \(9\), furthermore, in the general case, as well. In particular, we refute an 18 years old conjecture of Verstra\"ete. We also introduce another function \(f_{k,d}\) closely related to \(F_{k,d}\): While the original problem requires \(a_1, \ldots , a_k\) to all be distinct, we can relax this and only require that the multiset of the \(a_i\)'s cannot be partitioned into \(d\)-tuples where each \(d\)-tuple consists of \(d\) copies of the same number.</description><subject>Cubes</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQDyjKTylNLlEoSi0oSi1OzStJLMnMz1PIT1MoSC1KSwXKJJcmpRbzMLCmJeYUp_JCaW4GZTfXEGcP3YKi_MLS1OKS-Kz80qI8oFS8sYGpuamhoZGZkTFxqgCeXDAQ</recordid><startdate>20240520</startdate><enddate>20240520</enddate><creator>Zsigmond, György Fleiner</creator><creator>Juhász, Márk Hunor</creator><creator>Kövér, Blanka</creator><creator>Péter Pál Pach</creator><creator>Sándor, Csaba</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240520</creationdate><title>Product representation of perfect cubes</title><author>Zsigmond, György Fleiner ; Juhász, Márk Hunor ; Kövér, Blanka ; Péter Pál Pach ; Sándor, Csaba</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30575112623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cubes</topic><toplevel>online_resources</toplevel><creatorcontrib>Zsigmond, György Fleiner</creatorcontrib><creatorcontrib>Juhász, Márk Hunor</creatorcontrib><creatorcontrib>Kövér, Blanka</creatorcontrib><creatorcontrib>Péter Pál Pach</creatorcontrib><creatorcontrib>Sándor, Csaba</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zsigmond, György Fleiner</au><au>Juhász, Márk Hunor</au><au>Kövér, Blanka</au><au>Péter Pál Pach</au><au>Sándor, Csaba</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Product representation of perfect cubes</atitle><jtitle>arXiv.org</jtitle><date>2024-05-20</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Let \(F_{k,d}(n)\) be the maximal size of a set \({A}\subseteq [n]\) such that the equation \[a_1a_2\dots a_k=x^d, \; a_1&lt;a_2&lt;\ldots&lt;a_k\] has no solution with \(a_1,a_2,\ldots,a_k\in {A}\) and integer \(x\). Erdős, Sárk\"ozy and T. Sós studied \(F_{k,2}\), and gave bounds when \(k=2,3,4,6\) and also in the general case. We study the problem for \(d=3\), and provide bounds for \(k=2,3,4,6\) and \(9\), furthermore, in the general case, as well. In particular, we refute an 18 years old conjecture of Verstra\"ete. We also introduce another function \(f_{k,d}\) closely related to \(F_{k,d}\): While the original problem requires \(a_1, \ldots , a_k\) to all be distinct, we can relax this and only require that the multiset of the \(a_i\)'s cannot be partitioned into \(d\)-tuples where each \(d\)-tuple consists of \(d\) copies of the same number.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_3057511262
source Free E- Journals
subjects Cubes
title Product representation of perfect cubes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T22%3A32%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Product%20representation%20of%20perfect%20cubes&rft.jtitle=arXiv.org&rft.au=Zsigmond,%20Gy%C3%B6rgy%20Fleiner&rft.date=2024-05-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3057511262%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3057511262&rft_id=info:pmid/&rfr_iscdi=true