Physically Based Real‐Time Rendering of Atmospheres using Mie Theory

Most real‐time rendering models for atmospheric effects have been designed and optimized for Earth's atmosphere. Some authors have proposed approaches for rendering other atmospheres, but these methods still use approximations that are only valid on Earth. For instance, the iconic blue glow of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer graphics forum 2024-05, Vol.43 (2), p.n/a
Hauptverfasser: Schneegans, S., Meyran, T., Ginkel, I., Zachmann, G., Gerndt, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page
container_title Computer graphics forum
container_volume 43
creator Schneegans, S.
Meyran, T.
Ginkel, I.
Zachmann, G.
Gerndt, A.
description Most real‐time rendering models for atmospheric effects have been designed and optimized for Earth's atmosphere. Some authors have proposed approaches for rendering other atmospheres, but these methods still use approximations that are only valid on Earth. For instance, the iconic blue glow of Martian sunsets can not be represented properly as the complex interference effects of light scattered at dust particles can not be captured by these approximations. In this paper, we present an approach for generalizing an existing model to make it capable of rendering extraterrestrial atmospheres. This is done by replacing the approximations with a physical model based on Mie Theory. We use the particle‐size distribution, the particle‐density distribution as well as the wavelength‐dependent refractive index of atmospheric particles as input. To demonstrate the feasibility of this idea, we extend the model by Bruneton et al. [BN08] and implement it into CosmoScout VR, an open‐source visualization of our Solar System. In a first step, we use Mie Theory to precompute the scattering behaviour of a particle mixture. Then, multi‐scattering is simulated, and finally the precomputation results are used for real‐time rendering. We demonstrate that this not only improves the visualization of the Martian atmosphere, but also creates more realistic results for our own atmosphere.
doi_str_mv 10.1111/cgf.15010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3057294918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3057294918</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2920-60579e067b45ffba8cdf5c4bc80dec35db19697cf1338fe44b9bc7eafa96aa8c3</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqWw4AaRWLFIO278Ey9LRQtSEQiVteU44zZV2hS7FcqOI3BGToJL2DKbeRp98570CLmmMKBxhnbpBpQDhRPSo0zINBdcnZIe0KglcH5OLkJYAwCTgvfI9GXVhsqaum6TOxOwTF7R1N-fX4tqg1FvS_TVdpk0LhnvN03YrdBjSA7heHyqMFmssPHtJTlzpg549bf75G16v5g8pPPn2eNkPE_tSI0gFcClQhCyYNy5wuS2dNyywuZQos14WVAllLSOZlnukLFCFVaicUYJE-msT246351v3g8Y9nrdHPw2Ruoseo8UUzSP1G1HWd-E4NHpna82xreagj7WpGNN-remyA479qOqsf0f1JPZtPv4AY_Rahc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3057294918</pqid></control><display><type>article</type><title>Physically Based Real‐Time Rendering of Atmospheres using Mie Theory</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Schneegans, S. ; Meyran, T. ; Ginkel, I. ; Zachmann, G. ; Gerndt, A.</creator><creatorcontrib>Schneegans, S. ; Meyran, T. ; Ginkel, I. ; Zachmann, G. ; Gerndt, A.</creatorcontrib><description>Most real‐time rendering models for atmospheric effects have been designed and optimized for Earth's atmosphere. Some authors have proposed approaches for rendering other atmospheres, but these methods still use approximations that are only valid on Earth. For instance, the iconic blue glow of Martian sunsets can not be represented properly as the complex interference effects of light scattered at dust particles can not be captured by these approximations. In this paper, we present an approach for generalizing an existing model to make it capable of rendering extraterrestrial atmospheres. This is done by replacing the approximations with a physical model based on Mie Theory. We use the particle‐size distribution, the particle‐density distribution as well as the wavelength‐dependent refractive index of atmospheric particles as input. To demonstrate the feasibility of this idea, we extend the model by Bruneton et al. [BN08] and implement it into CosmoScout VR, an open‐source visualization of our Solar System. In a first step, we use Mie Theory to precompute the scattering behaviour of a particle mixture. Then, multi‐scattering is simulated, and finally the precomputation results are used for real‐time rendering. We demonstrate that this not only improves the visualization of the Martian atmosphere, but also creates more realistic results for our own atmosphere.</description><identifier>ISSN: 0167-7055</identifier><identifier>EISSN: 1467-8659</identifier><identifier>DOI: 10.1111/cgf.15010</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Approximation ; Atmosphere ; Atmospheric effects ; CCS Concepts ; Computing methodologies → Real‐time simulation ; Density distribution ; Mars atmosphere ; Mie scattering ; Refractivity ; Rendering ; Visualization</subject><ispartof>Computer graphics forum, 2024-05, Vol.43 (2), p.n/a</ispartof><rights>2024 The Authors. Computer Graphics Forum published by Eurographics ‐ The European Association for Computer Graphics and John Wiley &amp; Sons Ltd.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2920-60579e067b45ffba8cdf5c4bc80dec35db19697cf1338fe44b9bc7eafa96aa8c3</cites><orcidid>0009-0000-3728-421X ; 0000-0003-1847-4135 ; 0000-0001-8155-1127 ; 0000-0002-0409-8573</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcgf.15010$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcgf.15010$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Schneegans, S.</creatorcontrib><creatorcontrib>Meyran, T.</creatorcontrib><creatorcontrib>Ginkel, I.</creatorcontrib><creatorcontrib>Zachmann, G.</creatorcontrib><creatorcontrib>Gerndt, A.</creatorcontrib><title>Physically Based Real‐Time Rendering of Atmospheres using Mie Theory</title><title>Computer graphics forum</title><description>Most real‐time rendering models for atmospheric effects have been designed and optimized for Earth's atmosphere. Some authors have proposed approaches for rendering other atmospheres, but these methods still use approximations that are only valid on Earth. For instance, the iconic blue glow of Martian sunsets can not be represented properly as the complex interference effects of light scattered at dust particles can not be captured by these approximations. In this paper, we present an approach for generalizing an existing model to make it capable of rendering extraterrestrial atmospheres. This is done by replacing the approximations with a physical model based on Mie Theory. We use the particle‐size distribution, the particle‐density distribution as well as the wavelength‐dependent refractive index of atmospheric particles as input. To demonstrate the feasibility of this idea, we extend the model by Bruneton et al. [BN08] and implement it into CosmoScout VR, an open‐source visualization of our Solar System. In a first step, we use Mie Theory to precompute the scattering behaviour of a particle mixture. Then, multi‐scattering is simulated, and finally the precomputation results are used for real‐time rendering. We demonstrate that this not only improves the visualization of the Martian atmosphere, but also creates more realistic results for our own atmosphere.</description><subject>Approximation</subject><subject>Atmosphere</subject><subject>Atmospheric effects</subject><subject>CCS Concepts</subject><subject>Computing methodologies → Real‐time simulation</subject><subject>Density distribution</subject><subject>Mars atmosphere</subject><subject>Mie scattering</subject><subject>Refractivity</subject><subject>Rendering</subject><subject>Visualization</subject><issn>0167-7055</issn><issn>1467-8659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kE1OwzAQhS0EEqWw4AaRWLFIO278Ey9LRQtSEQiVteU44zZV2hS7FcqOI3BGToJL2DKbeRp98570CLmmMKBxhnbpBpQDhRPSo0zINBdcnZIe0KglcH5OLkJYAwCTgvfI9GXVhsqaum6TOxOwTF7R1N-fX4tqg1FvS_TVdpk0LhnvN03YrdBjSA7heHyqMFmssPHtJTlzpg549bf75G16v5g8pPPn2eNkPE_tSI0gFcClQhCyYNy5wuS2dNyywuZQos14WVAllLSOZlnukLFCFVaicUYJE-msT246351v3g8Y9nrdHPw2Ruoseo8UUzSP1G1HWd-E4NHpna82xreagj7WpGNN-remyA479qOqsf0f1JPZtPv4AY_Rahc</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Schneegans, S.</creator><creator>Meyran, T.</creator><creator>Ginkel, I.</creator><creator>Zachmann, G.</creator><creator>Gerndt, A.</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0009-0000-3728-421X</orcidid><orcidid>https://orcid.org/0000-0003-1847-4135</orcidid><orcidid>https://orcid.org/0000-0001-8155-1127</orcidid><orcidid>https://orcid.org/0000-0002-0409-8573</orcidid></search><sort><creationdate>202405</creationdate><title>Physically Based Real‐Time Rendering of Atmospheres using Mie Theory</title><author>Schneegans, S. ; Meyran, T. ; Ginkel, I. ; Zachmann, G. ; Gerndt, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2920-60579e067b45ffba8cdf5c4bc80dec35db19697cf1338fe44b9bc7eafa96aa8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Approximation</topic><topic>Atmosphere</topic><topic>Atmospheric effects</topic><topic>CCS Concepts</topic><topic>Computing methodologies → Real‐time simulation</topic><topic>Density distribution</topic><topic>Mars atmosphere</topic><topic>Mie scattering</topic><topic>Refractivity</topic><topic>Rendering</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schneegans, S.</creatorcontrib><creatorcontrib>Meyran, T.</creatorcontrib><creatorcontrib>Ginkel, I.</creatorcontrib><creatorcontrib>Zachmann, G.</creatorcontrib><creatorcontrib>Gerndt, A.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer graphics forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schneegans, S.</au><au>Meyran, T.</au><au>Ginkel, I.</au><au>Zachmann, G.</au><au>Gerndt, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physically Based Real‐Time Rendering of Atmospheres using Mie Theory</atitle><jtitle>Computer graphics forum</jtitle><date>2024-05</date><risdate>2024</risdate><volume>43</volume><issue>2</issue><epage>n/a</epage><issn>0167-7055</issn><eissn>1467-8659</eissn><abstract>Most real‐time rendering models for atmospheric effects have been designed and optimized for Earth's atmosphere. Some authors have proposed approaches for rendering other atmospheres, but these methods still use approximations that are only valid on Earth. For instance, the iconic blue glow of Martian sunsets can not be represented properly as the complex interference effects of light scattered at dust particles can not be captured by these approximations. In this paper, we present an approach for generalizing an existing model to make it capable of rendering extraterrestrial atmospheres. This is done by replacing the approximations with a physical model based on Mie Theory. We use the particle‐size distribution, the particle‐density distribution as well as the wavelength‐dependent refractive index of atmospheric particles as input. To demonstrate the feasibility of this idea, we extend the model by Bruneton et al. [BN08] and implement it into CosmoScout VR, an open‐source visualization of our Solar System. In a first step, we use Mie Theory to precompute the scattering behaviour of a particle mixture. Then, multi‐scattering is simulated, and finally the precomputation results are used for real‐time rendering. We demonstrate that this not only improves the visualization of the Martian atmosphere, but also creates more realistic results for our own atmosphere.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/cgf.15010</doi><tpages>11</tpages><orcidid>https://orcid.org/0009-0000-3728-421X</orcidid><orcidid>https://orcid.org/0000-0003-1847-4135</orcidid><orcidid>https://orcid.org/0000-0001-8155-1127</orcidid><orcidid>https://orcid.org/0000-0002-0409-8573</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-7055
ispartof Computer graphics forum, 2024-05, Vol.43 (2), p.n/a
issn 0167-7055
1467-8659
language eng
recordid cdi_proquest_journals_3057294918
source Wiley Online Library Journals Frontfile Complete
subjects Approximation
Atmosphere
Atmospheric effects
CCS Concepts
Computing methodologies → Real‐time simulation
Density distribution
Mars atmosphere
Mie scattering
Refractivity
Rendering
Visualization
title Physically Based Real‐Time Rendering of Atmospheres using Mie Theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A05%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physically%20Based%20Real%E2%80%90Time%20Rendering%20of%20Atmospheres%20using%20Mie%20Theory&rft.jtitle=Computer%20graphics%20forum&rft.au=Schneegans,%20S.&rft.date=2024-05&rft.volume=43&rft.issue=2&rft.epage=n/a&rft.issn=0167-7055&rft.eissn=1467-8659&rft_id=info:doi/10.1111/cgf.15010&rft_dat=%3Cproquest_cross%3E3057294918%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3057294918&rft_id=info:pmid/&rfr_iscdi=true