Physically Based Real‐Time Rendering of Atmospheres using Mie Theory
Most real‐time rendering models for atmospheric effects have been designed and optimized for Earth's atmosphere. Some authors have proposed approaches for rendering other atmospheres, but these methods still use approximations that are only valid on Earth. For instance, the iconic blue glow of...
Gespeichert in:
Veröffentlicht in: | Computer graphics forum 2024-05, Vol.43 (2), p.n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Computer graphics forum |
container_volume | 43 |
creator | Schneegans, S. Meyran, T. Ginkel, I. Zachmann, G. Gerndt, A. |
description | Most real‐time rendering models for atmospheric effects have been designed and optimized for Earth's atmosphere. Some authors have proposed approaches for rendering other atmospheres, but these methods still use approximations that are only valid on Earth. For instance, the iconic blue glow of Martian sunsets can not be represented properly as the complex interference effects of light scattered at dust particles can not be captured by these approximations. In this paper, we present an approach for generalizing an existing model to make it capable of rendering extraterrestrial atmospheres. This is done by replacing the approximations with a physical model based on Mie Theory. We use the particle‐size distribution, the particle‐density distribution as well as the wavelength‐dependent refractive index of atmospheric particles as input. To demonstrate the feasibility of this idea, we extend the model by Bruneton et al. [BN08] and implement it into CosmoScout VR, an open‐source visualization of our Solar System. In a first step, we use Mie Theory to precompute the scattering behaviour of a particle mixture. Then, multi‐scattering is simulated, and finally the precomputation results are used for real‐time rendering. We demonstrate that this not only improves the visualization of the Martian atmosphere, but also creates more realistic results for our own atmosphere. |
doi_str_mv | 10.1111/cgf.15010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3057294918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3057294918</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2920-60579e067b45ffba8cdf5c4bc80dec35db19697cf1338fe44b9bc7eafa96aa8c3</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqWw4AaRWLFIO278Ey9LRQtSEQiVteU44zZV2hS7FcqOI3BGToJL2DKbeRp98570CLmmMKBxhnbpBpQDhRPSo0zINBdcnZIe0KglcH5OLkJYAwCTgvfI9GXVhsqaum6TOxOwTF7R1N-fX4tqg1FvS_TVdpk0LhnvN03YrdBjSA7heHyqMFmssPHtJTlzpg549bf75G16v5g8pPPn2eNkPE_tSI0gFcClQhCyYNy5wuS2dNyywuZQos14WVAllLSOZlnukLFCFVaicUYJE-msT246351v3g8Y9nrdHPw2Ruoseo8UUzSP1G1HWd-E4NHpna82xreagj7WpGNN-remyA479qOqsf0f1JPZtPv4AY_Rahc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3057294918</pqid></control><display><type>article</type><title>Physically Based Real‐Time Rendering of Atmospheres using Mie Theory</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Schneegans, S. ; Meyran, T. ; Ginkel, I. ; Zachmann, G. ; Gerndt, A.</creator><creatorcontrib>Schneegans, S. ; Meyran, T. ; Ginkel, I. ; Zachmann, G. ; Gerndt, A.</creatorcontrib><description>Most real‐time rendering models for atmospheric effects have been designed and optimized for Earth's atmosphere. Some authors have proposed approaches for rendering other atmospheres, but these methods still use approximations that are only valid on Earth. For instance, the iconic blue glow of Martian sunsets can not be represented properly as the complex interference effects of light scattered at dust particles can not be captured by these approximations. In this paper, we present an approach for generalizing an existing model to make it capable of rendering extraterrestrial atmospheres. This is done by replacing the approximations with a physical model based on Mie Theory. We use the particle‐size distribution, the particle‐density distribution as well as the wavelength‐dependent refractive index of atmospheric particles as input. To demonstrate the feasibility of this idea, we extend the model by Bruneton et al. [BN08] and implement it into CosmoScout VR, an open‐source visualization of our Solar System. In a first step, we use Mie Theory to precompute the scattering behaviour of a particle mixture. Then, multi‐scattering is simulated, and finally the precomputation results are used for real‐time rendering. We demonstrate that this not only improves the visualization of the Martian atmosphere, but also creates more realistic results for our own atmosphere.</description><identifier>ISSN: 0167-7055</identifier><identifier>EISSN: 1467-8659</identifier><identifier>DOI: 10.1111/cgf.15010</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Approximation ; Atmosphere ; Atmospheric effects ; CCS Concepts ; Computing methodologies → Real‐time simulation ; Density distribution ; Mars atmosphere ; Mie scattering ; Refractivity ; Rendering ; Visualization</subject><ispartof>Computer graphics forum, 2024-05, Vol.43 (2), p.n/a</ispartof><rights>2024 The Authors. Computer Graphics Forum published by Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2920-60579e067b45ffba8cdf5c4bc80dec35db19697cf1338fe44b9bc7eafa96aa8c3</cites><orcidid>0009-0000-3728-421X ; 0000-0003-1847-4135 ; 0000-0001-8155-1127 ; 0000-0002-0409-8573</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcgf.15010$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcgf.15010$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Schneegans, S.</creatorcontrib><creatorcontrib>Meyran, T.</creatorcontrib><creatorcontrib>Ginkel, I.</creatorcontrib><creatorcontrib>Zachmann, G.</creatorcontrib><creatorcontrib>Gerndt, A.</creatorcontrib><title>Physically Based Real‐Time Rendering of Atmospheres using Mie Theory</title><title>Computer graphics forum</title><description>Most real‐time rendering models for atmospheric effects have been designed and optimized for Earth's atmosphere. Some authors have proposed approaches for rendering other atmospheres, but these methods still use approximations that are only valid on Earth. For instance, the iconic blue glow of Martian sunsets can not be represented properly as the complex interference effects of light scattered at dust particles can not be captured by these approximations. In this paper, we present an approach for generalizing an existing model to make it capable of rendering extraterrestrial atmospheres. This is done by replacing the approximations with a physical model based on Mie Theory. We use the particle‐size distribution, the particle‐density distribution as well as the wavelength‐dependent refractive index of atmospheric particles as input. To demonstrate the feasibility of this idea, we extend the model by Bruneton et al. [BN08] and implement it into CosmoScout VR, an open‐source visualization of our Solar System. In a first step, we use Mie Theory to precompute the scattering behaviour of a particle mixture. Then, multi‐scattering is simulated, and finally the precomputation results are used for real‐time rendering. We demonstrate that this not only improves the visualization of the Martian atmosphere, but also creates more realistic results for our own atmosphere.</description><subject>Approximation</subject><subject>Atmosphere</subject><subject>Atmospheric effects</subject><subject>CCS Concepts</subject><subject>Computing methodologies → Real‐time simulation</subject><subject>Density distribution</subject><subject>Mars atmosphere</subject><subject>Mie scattering</subject><subject>Refractivity</subject><subject>Rendering</subject><subject>Visualization</subject><issn>0167-7055</issn><issn>1467-8659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kE1OwzAQhS0EEqWw4AaRWLFIO278Ey9LRQtSEQiVteU44zZV2hS7FcqOI3BGToJL2DKbeRp98570CLmmMKBxhnbpBpQDhRPSo0zINBdcnZIe0KglcH5OLkJYAwCTgvfI9GXVhsqaum6TOxOwTF7R1N-fX4tqg1FvS_TVdpk0LhnvN03YrdBjSA7heHyqMFmssPHtJTlzpg549bf75G16v5g8pPPn2eNkPE_tSI0gFcClQhCyYNy5wuS2dNyywuZQos14WVAllLSOZlnukLFCFVaicUYJE-msT246351v3g8Y9nrdHPw2Ruoseo8UUzSP1G1HWd-E4NHpna82xreagj7WpGNN-remyA479qOqsf0f1JPZtPv4AY_Rahc</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Schneegans, S.</creator><creator>Meyran, T.</creator><creator>Ginkel, I.</creator><creator>Zachmann, G.</creator><creator>Gerndt, A.</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0009-0000-3728-421X</orcidid><orcidid>https://orcid.org/0000-0003-1847-4135</orcidid><orcidid>https://orcid.org/0000-0001-8155-1127</orcidid><orcidid>https://orcid.org/0000-0002-0409-8573</orcidid></search><sort><creationdate>202405</creationdate><title>Physically Based Real‐Time Rendering of Atmospheres using Mie Theory</title><author>Schneegans, S. ; Meyran, T. ; Ginkel, I. ; Zachmann, G. ; Gerndt, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2920-60579e067b45ffba8cdf5c4bc80dec35db19697cf1338fe44b9bc7eafa96aa8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Approximation</topic><topic>Atmosphere</topic><topic>Atmospheric effects</topic><topic>CCS Concepts</topic><topic>Computing methodologies → Real‐time simulation</topic><topic>Density distribution</topic><topic>Mars atmosphere</topic><topic>Mie scattering</topic><topic>Refractivity</topic><topic>Rendering</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schneegans, S.</creatorcontrib><creatorcontrib>Meyran, T.</creatorcontrib><creatorcontrib>Ginkel, I.</creatorcontrib><creatorcontrib>Zachmann, G.</creatorcontrib><creatorcontrib>Gerndt, A.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer graphics forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schneegans, S.</au><au>Meyran, T.</au><au>Ginkel, I.</au><au>Zachmann, G.</au><au>Gerndt, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physically Based Real‐Time Rendering of Atmospheres using Mie Theory</atitle><jtitle>Computer graphics forum</jtitle><date>2024-05</date><risdate>2024</risdate><volume>43</volume><issue>2</issue><epage>n/a</epage><issn>0167-7055</issn><eissn>1467-8659</eissn><abstract>Most real‐time rendering models for atmospheric effects have been designed and optimized for Earth's atmosphere. Some authors have proposed approaches for rendering other atmospheres, but these methods still use approximations that are only valid on Earth. For instance, the iconic blue glow of Martian sunsets can not be represented properly as the complex interference effects of light scattered at dust particles can not be captured by these approximations. In this paper, we present an approach for generalizing an existing model to make it capable of rendering extraterrestrial atmospheres. This is done by replacing the approximations with a physical model based on Mie Theory. We use the particle‐size distribution, the particle‐density distribution as well as the wavelength‐dependent refractive index of atmospheric particles as input. To demonstrate the feasibility of this idea, we extend the model by Bruneton et al. [BN08] and implement it into CosmoScout VR, an open‐source visualization of our Solar System. In a first step, we use Mie Theory to precompute the scattering behaviour of a particle mixture. Then, multi‐scattering is simulated, and finally the precomputation results are used for real‐time rendering. We demonstrate that this not only improves the visualization of the Martian atmosphere, but also creates more realistic results for our own atmosphere.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/cgf.15010</doi><tpages>11</tpages><orcidid>https://orcid.org/0009-0000-3728-421X</orcidid><orcidid>https://orcid.org/0000-0003-1847-4135</orcidid><orcidid>https://orcid.org/0000-0001-8155-1127</orcidid><orcidid>https://orcid.org/0000-0002-0409-8573</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-7055 |
ispartof | Computer graphics forum, 2024-05, Vol.43 (2), p.n/a |
issn | 0167-7055 1467-8659 |
language | eng |
recordid | cdi_proquest_journals_3057294918 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Approximation Atmosphere Atmospheric effects CCS Concepts Computing methodologies → Real‐time simulation Density distribution Mars atmosphere Mie scattering Refractivity Rendering Visualization |
title | Physically Based Real‐Time Rendering of Atmospheres using Mie Theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A05%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physically%20Based%20Real%E2%80%90Time%20Rendering%20of%20Atmospheres%20using%20Mie%20Theory&rft.jtitle=Computer%20graphics%20forum&rft.au=Schneegans,%20S.&rft.date=2024-05&rft.volume=43&rft.issue=2&rft.epage=n/a&rft.issn=0167-7055&rft.eissn=1467-8659&rft_id=info:doi/10.1111/cgf.15010&rft_dat=%3Cproquest_cross%3E3057294918%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3057294918&rft_id=info:pmid/&rfr_iscdi=true |