Research on Efficient Asymmetric Attention Module for Real-Time Semantic Segmentation Networks in Urban Scenes

Currently, numerous high-precision models have been proposed for semantic segmentation, but the model parameters are large and the segmentation speed is slow. Real-time semantic segmentation for urban scenes necessitates a balance between accuracy, inference speed, and model size. In this paper, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of advanced computational intelligence and intelligent informatics 2024-05, Vol.28 (3), p.562-572
Hauptverfasser: Su, Xu, Li, Lihong, Xiao, Jiejie, Wang, Pengtao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 572
container_issue 3
container_start_page 562
container_title Journal of advanced computational intelligence and intelligent informatics
container_volume 28
creator Su, Xu
Li, Lihong
Xiao, Jiejie
Wang, Pengtao
description Currently, numerous high-precision models have been proposed for semantic segmentation, but the model parameters are large and the segmentation speed is slow. Real-time semantic segmentation for urban scenes necessitates a balance between accuracy, inference speed, and model size. In this paper, we present an efficient solution to this challenge, efficient asymmetric attention module net (EAAMNet) for the semantic segmentation of urban scenes, which adopts an asymmetric encoder–decoder structure. The encoder part of the network utilizes an efficient asymmetric attention module to form the network backbone. In the decoding part, we propose a lightweight multi-feature fusion decoder that can maintain good segmentation accuracy with a small number of parameters. Our extensive evaluations demonstrate that EAAMNet achieves a favorable equilibrium between segmentation efficiency, model parameters, and segmentation accuracy, rendering it highly suitable for real-time semantic segmentation in urban scenes. Remarkably, EAAMNet attains a 73.31% mIoU at 128 fps on Cityscapes and a 69.32% mIoU at 141 fps on CamVid without any pre-training. Compared to state-of-the-art models, our approach not only matches their model parameters but also enhances accuracy and increases speed.
doi_str_mv 10.20965/jaciii.2024.p0562
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3056465449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3056465449</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-3f43c12201b2b441f0c4f0d3e55ec65ce8a31772c235b8d083d6186eb8c4f2563</originalsourceid><addsrcrecordid>eNotkNtKAzEQhoMoWLQv4FXA6605N70spR6gKvRwHbLZiaZ2szXZIn17Y-vV_DPzMQMfQneUjBiZKPmwtS6EUBomRnsiFbtAA6o1rzSh4rJkLnhFKCfXaJjzlpCSmSKCDlBcQgab3CfuIp57H1yA2ONpPrYt9Ck4PO37Mgll_do1hx1g3yW8BLur1qEFvILWlrUr4aMtoD2hb9D_dOkr4xDxJtU24pWDCPkWXXm7yzD8rzdo8zhfz56rxfvTy2y6qByXpK-4F9xRxgitWS0E9cQJTxoOUoJT0oG2nI7HzDEua90QzRtFtYJaF45JxW_Q_fnuPnXfB8i92XaHFMtLw4sgoaQQk0KxM-VSl3MCb_YptDYdDSXmpNac1Zo_teaklv8C53luLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3056465449</pqid></control><display><type>article</type><title>Research on Efficient Asymmetric Attention Module for Real-Time Semantic Segmentation Networks in Urban Scenes</title><source>DOAJ Directory of Open Access Journals</source><creator>Su, Xu ; Li, Lihong ; Xiao, Jiejie ; Wang, Pengtao</creator><creatorcontrib>Su, Xu ; Li, Lihong ; Xiao, Jiejie ; Wang, Pengtao</creatorcontrib><description>Currently, numerous high-precision models have been proposed for semantic segmentation, but the model parameters are large and the segmentation speed is slow. Real-time semantic segmentation for urban scenes necessitates a balance between accuracy, inference speed, and model size. In this paper, we present an efficient solution to this challenge, efficient asymmetric attention module net (EAAMNet) for the semantic segmentation of urban scenes, which adopts an asymmetric encoder–decoder structure. The encoder part of the network utilizes an efficient asymmetric attention module to form the network backbone. In the decoding part, we propose a lightweight multi-feature fusion decoder that can maintain good segmentation accuracy with a small number of parameters. Our extensive evaluations demonstrate that EAAMNet achieves a favorable equilibrium between segmentation efficiency, model parameters, and segmentation accuracy, rendering it highly suitable for real-time semantic segmentation in urban scenes. Remarkably, EAAMNet attains a 73.31% mIoU at 128 fps on Cityscapes and a 69.32% mIoU at 141 fps on CamVid without any pre-training. Compared to state-of-the-art models, our approach not only matches their model parameters but also enhances accuracy and increases speed.</description><identifier>ISSN: 1343-0130</identifier><identifier>EISSN: 1883-8014</identifier><identifier>DOI: 10.20965/jaciii.2024.p0562</identifier><language>eng</language><publisher>Tokyo: Fuji Technology Press Co. Ltd</publisher><subject>Accuracy ; Asymmetry ; Coders ; Decoding ; Modules ; Parameters ; Real time ; Semantic segmentation ; Semantics</subject><ispartof>Journal of advanced computational intelligence and intelligent informatics, 2024-05, Vol.28 (3), p.562-572</ispartof><rights>Copyright © 2024 Fuji Technology Press Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c350t-3f43c12201b2b441f0c4f0d3e55ec65ce8a31772c235b8d083d6186eb8c4f2563</cites><orcidid>0000-0002-5243-9133 ; 0000-0002-1264-8483 ; 0009-0000-7930-766X ; 0009-0003-7765-8329</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Su, Xu</creatorcontrib><creatorcontrib>Li, Lihong</creatorcontrib><creatorcontrib>Xiao, Jiejie</creatorcontrib><creatorcontrib>Wang, Pengtao</creatorcontrib><title>Research on Efficient Asymmetric Attention Module for Real-Time Semantic Segmentation Networks in Urban Scenes</title><title>Journal of advanced computational intelligence and intelligent informatics</title><description>Currently, numerous high-precision models have been proposed for semantic segmentation, but the model parameters are large and the segmentation speed is slow. Real-time semantic segmentation for urban scenes necessitates a balance between accuracy, inference speed, and model size. In this paper, we present an efficient solution to this challenge, efficient asymmetric attention module net (EAAMNet) for the semantic segmentation of urban scenes, which adopts an asymmetric encoder–decoder structure. The encoder part of the network utilizes an efficient asymmetric attention module to form the network backbone. In the decoding part, we propose a lightweight multi-feature fusion decoder that can maintain good segmentation accuracy with a small number of parameters. Our extensive evaluations demonstrate that EAAMNet achieves a favorable equilibrium between segmentation efficiency, model parameters, and segmentation accuracy, rendering it highly suitable for real-time semantic segmentation in urban scenes. Remarkably, EAAMNet attains a 73.31% mIoU at 128 fps on Cityscapes and a 69.32% mIoU at 141 fps on CamVid without any pre-training. Compared to state-of-the-art models, our approach not only matches their model parameters but also enhances accuracy and increases speed.</description><subject>Accuracy</subject><subject>Asymmetry</subject><subject>Coders</subject><subject>Decoding</subject><subject>Modules</subject><subject>Parameters</subject><subject>Real time</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><issn>1343-0130</issn><issn>1883-8014</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNotkNtKAzEQhoMoWLQv4FXA6605N70spR6gKvRwHbLZiaZ2szXZIn17Y-vV_DPzMQMfQneUjBiZKPmwtS6EUBomRnsiFbtAA6o1rzSh4rJkLnhFKCfXaJjzlpCSmSKCDlBcQgab3CfuIp57H1yA2ONpPrYt9Ck4PO37Mgll_do1hx1g3yW8BLur1qEFvILWlrUr4aMtoD2hb9D_dOkr4xDxJtU24pWDCPkWXXm7yzD8rzdo8zhfz56rxfvTy2y6qByXpK-4F9xRxgitWS0E9cQJTxoOUoJT0oG2nI7HzDEua90QzRtFtYJaF45JxW_Q_fnuPnXfB8i92XaHFMtLw4sgoaQQk0KxM-VSl3MCb_YptDYdDSXmpNac1Zo_teaklv8C53luLQ</recordid><startdate>20240520</startdate><enddate>20240520</enddate><creator>Su, Xu</creator><creator>Li, Lihong</creator><creator>Xiao, Jiejie</creator><creator>Wang, Pengtao</creator><general>Fuji Technology Press Co. Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-5243-9133</orcidid><orcidid>https://orcid.org/0000-0002-1264-8483</orcidid><orcidid>https://orcid.org/0009-0000-7930-766X</orcidid><orcidid>https://orcid.org/0009-0003-7765-8329</orcidid></search><sort><creationdate>20240520</creationdate><title>Research on Efficient Asymmetric Attention Module for Real-Time Semantic Segmentation Networks in Urban Scenes</title><author>Su, Xu ; Li, Lihong ; Xiao, Jiejie ; Wang, Pengtao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-3f43c12201b2b441f0c4f0d3e55ec65ce8a31772c235b8d083d6186eb8c4f2563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Asymmetry</topic><topic>Coders</topic><topic>Decoding</topic><topic>Modules</topic><topic>Parameters</topic><topic>Real time</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Xu</creatorcontrib><creatorcontrib>Li, Lihong</creatorcontrib><creatorcontrib>Xiao, Jiejie</creatorcontrib><creatorcontrib>Wang, Pengtao</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of advanced computational intelligence and intelligent informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Xu</au><au>Li, Lihong</au><au>Xiao, Jiejie</au><au>Wang, Pengtao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on Efficient Asymmetric Attention Module for Real-Time Semantic Segmentation Networks in Urban Scenes</atitle><jtitle>Journal of advanced computational intelligence and intelligent informatics</jtitle><date>2024-05-20</date><risdate>2024</risdate><volume>28</volume><issue>3</issue><spage>562</spage><epage>572</epage><pages>562-572</pages><issn>1343-0130</issn><eissn>1883-8014</eissn><abstract>Currently, numerous high-precision models have been proposed for semantic segmentation, but the model parameters are large and the segmentation speed is slow. Real-time semantic segmentation for urban scenes necessitates a balance between accuracy, inference speed, and model size. In this paper, we present an efficient solution to this challenge, efficient asymmetric attention module net (EAAMNet) for the semantic segmentation of urban scenes, which adopts an asymmetric encoder–decoder structure. The encoder part of the network utilizes an efficient asymmetric attention module to form the network backbone. In the decoding part, we propose a lightweight multi-feature fusion decoder that can maintain good segmentation accuracy with a small number of parameters. Our extensive evaluations demonstrate that EAAMNet achieves a favorable equilibrium between segmentation efficiency, model parameters, and segmentation accuracy, rendering it highly suitable for real-time semantic segmentation in urban scenes. Remarkably, EAAMNet attains a 73.31% mIoU at 128 fps on Cityscapes and a 69.32% mIoU at 141 fps on CamVid without any pre-training. Compared to state-of-the-art models, our approach not only matches their model parameters but also enhances accuracy and increases speed.</abstract><cop>Tokyo</cop><pub>Fuji Technology Press Co. Ltd</pub><doi>10.20965/jaciii.2024.p0562</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5243-9133</orcidid><orcidid>https://orcid.org/0000-0002-1264-8483</orcidid><orcidid>https://orcid.org/0009-0000-7930-766X</orcidid><orcidid>https://orcid.org/0009-0003-7765-8329</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1343-0130
ispartof Journal of advanced computational intelligence and intelligent informatics, 2024-05, Vol.28 (3), p.562-572
issn 1343-0130
1883-8014
language eng
recordid cdi_proquest_journals_3056465449
source DOAJ Directory of Open Access Journals
subjects Accuracy
Asymmetry
Coders
Decoding
Modules
Parameters
Real time
Semantic segmentation
Semantics
title Research on Efficient Asymmetric Attention Module for Real-Time Semantic Segmentation Networks in Urban Scenes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A59%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20Efficient%20Asymmetric%20Attention%20Module%20for%20Real-Time%20Semantic%20Segmentation%20Networks%20in%20Urban%20Scenes&rft.jtitle=Journal%20of%20advanced%20computational%20intelligence%20and%20intelligent%20informatics&rft.au=Su,%20Xu&rft.date=2024-05-20&rft.volume=28&rft.issue=3&rft.spage=562&rft.epage=572&rft.pages=562-572&rft.issn=1343-0130&rft.eissn=1883-8014&rft_id=info:doi/10.20965/jaciii.2024.p0562&rft_dat=%3Cproquest_cross%3E3056465449%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3056465449&rft_id=info:pmid/&rfr_iscdi=true