A Bregman-Style Improved ADMM and its Linearized Version in the Nonconvex Setting: Convergence and Rate Analyses

This work explores a family of two-block nonconvex optimization problems subject to linear constraints. We first introduce a simple but universal Bregman-style improved alternating direction method of multipliers (ADMM) based on the iteration framework of ADMM and the Bregman distance. Then, we util...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Operations Research Society of China (Internet) 2024-06, Vol.12 (2), p.298-340
Hauptverfasser: Liu, Peng-Jie, Jian, Jin-Bao, Shao, Hu, Wang, Xiao-Quan, Xu, Jia-Wei, Wu, Xiao-Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 340
container_issue 2
container_start_page 298
container_title Journal of the Operations Research Society of China (Internet)
container_volume 12
creator Liu, Peng-Jie
Jian, Jin-Bao
Shao, Hu
Wang, Xiao-Quan
Xu, Jia-Wei
Wu, Xiao-Yu
description This work explores a family of two-block nonconvex optimization problems subject to linear constraints. We first introduce a simple but universal Bregman-style improved alternating direction method of multipliers (ADMM) based on the iteration framework of ADMM and the Bregman distance. Then, we utilize the smooth performance of one of the components to develop a linearized version of it. Compared to the traditional ADMM, both proposed methods integrate a convex combination strategy into the multiplier update step. For each proposed method, we demonstrate the convergence of the entire iteration sequence to a unique critical point of the augmented Lagrangian function utilizing the powerful Kurdyka–Łojasiewicz property, and we also derive convergence rates for both the sequence of merit function values and the iteration sequence. Finally, some numerical results show that the proposed methods are effective and encouraging for the Lasso model.
doi_str_mv 10.1007/s40305-023-00535-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3056250157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3056250157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-ba7b33193ab190a59111b7e9b2b6880a596b990657dcbf12513fdc8bb40b0e33</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWLR_wFXA9ejNpJmHu1pfhVbBFnEXkpk7Y6TN1CQt1l_vtCO6c3UfnHO49yPkjMEFA0gv_QA4iAhiHgEILqLsgPRilg-iJMmzw98-ez0mfe-NBhFnQiTAemQ1pNcO66Wy0SxsF0jHy5VrNljS4c10SpUtqQmeToxF5cxXu39B501jqbE0vCF9bGzR2A1-0hmGYGx9RUe72dVoC9wHPKuAdGjVYuvRn5KjSi089n_qCZnf3c5HD9Hk6X48Gk6iIk4hRFqlmnOWc6VZDkrkjDGdYq5jnWTZbpHoPIdEpGWhKxYLxquyyLQegAbk_IScd7HtNx9r9EG-N2vX3uBlyyqJBTCRtqq4UxWu8d5hJVfOLJXbSgZyx1Z2bGXLVu7Zyqw18c7kW7Gt0f1F_-P6Br47e80</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3056250157</pqid></control><display><type>article</type><title>A Bregman-Style Improved ADMM and its Linearized Version in the Nonconvex Setting: Convergence and Rate Analyses</title><source>Springer Nature - Complete Springer Journals</source><creator>Liu, Peng-Jie ; Jian, Jin-Bao ; Shao, Hu ; Wang, Xiao-Quan ; Xu, Jia-Wei ; Wu, Xiao-Yu</creator><creatorcontrib>Liu, Peng-Jie ; Jian, Jin-Bao ; Shao, Hu ; Wang, Xiao-Quan ; Xu, Jia-Wei ; Wu, Xiao-Yu</creatorcontrib><description>This work explores a family of two-block nonconvex optimization problems subject to linear constraints. We first introduce a simple but universal Bregman-style improved alternating direction method of multipliers (ADMM) based on the iteration framework of ADMM and the Bregman distance. Then, we utilize the smooth performance of one of the components to develop a linearized version of it. Compared to the traditional ADMM, both proposed methods integrate a convex combination strategy into the multiplier update step. For each proposed method, we demonstrate the convergence of the entire iteration sequence to a unique critical point of the augmented Lagrangian function utilizing the powerful Kurdyka–Łojasiewicz property, and we also derive convergence rates for both the sequence of merit function values and the iteration sequence. Finally, some numerical results show that the proposed methods are effective and encouraging for the Lasso model.</description><identifier>ISSN: 2194-668X</identifier><identifier>EISSN: 2194-6698</identifier><identifier>DOI: 10.1007/s40305-023-00535-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Approximation ; Convergence ; Critical point ; Iterative methods ; Lagrange multiplier ; Lagrangian function ; Linearization ; Management Science ; Mathematics ; Mathematics and Statistics ; Multipliers ; Operations Research ; Optimization ; Partial differential equations ; Traffic assignment</subject><ispartof>Journal of the Operations Research Society of China (Internet), 2024-06, Vol.12 (2), p.298-340</ispartof><rights>Operations Research Society of China, Periodicals Agency of Shanghai University, Science Press, and Springer-Verlag GmbH Germany, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-ba7b33193ab190a59111b7e9b2b6880a596b990657dcbf12513fdc8bb40b0e33</cites><orcidid>0000-0001-8048-7397</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40305-023-00535-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40305-023-00535-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Liu, Peng-Jie</creatorcontrib><creatorcontrib>Jian, Jin-Bao</creatorcontrib><creatorcontrib>Shao, Hu</creatorcontrib><creatorcontrib>Wang, Xiao-Quan</creatorcontrib><creatorcontrib>Xu, Jia-Wei</creatorcontrib><creatorcontrib>Wu, Xiao-Yu</creatorcontrib><title>A Bregman-Style Improved ADMM and its Linearized Version in the Nonconvex Setting: Convergence and Rate Analyses</title><title>Journal of the Operations Research Society of China (Internet)</title><addtitle>J. Oper. Res. Soc. China</addtitle><description>This work explores a family of two-block nonconvex optimization problems subject to linear constraints. We first introduce a simple but universal Bregman-style improved alternating direction method of multipliers (ADMM) based on the iteration framework of ADMM and the Bregman distance. Then, we utilize the smooth performance of one of the components to develop a linearized version of it. Compared to the traditional ADMM, both proposed methods integrate a convex combination strategy into the multiplier update step. For each proposed method, we demonstrate the convergence of the entire iteration sequence to a unique critical point of the augmented Lagrangian function utilizing the powerful Kurdyka–Łojasiewicz property, and we also derive convergence rates for both the sequence of merit function values and the iteration sequence. Finally, some numerical results show that the proposed methods are effective and encouraging for the Lasso model.</description><subject>Approximation</subject><subject>Convergence</subject><subject>Critical point</subject><subject>Iterative methods</subject><subject>Lagrange multiplier</subject><subject>Lagrangian function</subject><subject>Linearization</subject><subject>Management Science</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Multipliers</subject><subject>Operations Research</subject><subject>Optimization</subject><subject>Partial differential equations</subject><subject>Traffic assignment</subject><issn>2194-668X</issn><issn>2194-6698</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWLR_wFXA9ejNpJmHu1pfhVbBFnEXkpk7Y6TN1CQt1l_vtCO6c3UfnHO49yPkjMEFA0gv_QA4iAhiHgEILqLsgPRilg-iJMmzw98-ez0mfe-NBhFnQiTAemQ1pNcO66Wy0SxsF0jHy5VrNljS4c10SpUtqQmeToxF5cxXu39B501jqbE0vCF9bGzR2A1-0hmGYGx9RUe72dVoC9wHPKuAdGjVYuvRn5KjSi089n_qCZnf3c5HD9Hk6X48Gk6iIk4hRFqlmnOWc6VZDkrkjDGdYq5jnWTZbpHoPIdEpGWhKxYLxquyyLQegAbk_IScd7HtNx9r9EG-N2vX3uBlyyqJBTCRtqq4UxWu8d5hJVfOLJXbSgZyx1Z2bGXLVu7Zyqw18c7kW7Gt0f1F_-P6Br47e80</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Liu, Peng-Jie</creator><creator>Jian, Jin-Bao</creator><creator>Shao, Hu</creator><creator>Wang, Xiao-Quan</creator><creator>Xu, Jia-Wei</creator><creator>Wu, Xiao-Yu</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8048-7397</orcidid></search><sort><creationdate>20240601</creationdate><title>A Bregman-Style Improved ADMM and its Linearized Version in the Nonconvex Setting: Convergence and Rate Analyses</title><author>Liu, Peng-Jie ; Jian, Jin-Bao ; Shao, Hu ; Wang, Xiao-Quan ; Xu, Jia-Wei ; Wu, Xiao-Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-ba7b33193ab190a59111b7e9b2b6880a596b990657dcbf12513fdc8bb40b0e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Approximation</topic><topic>Convergence</topic><topic>Critical point</topic><topic>Iterative methods</topic><topic>Lagrange multiplier</topic><topic>Lagrangian function</topic><topic>Linearization</topic><topic>Management Science</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Multipliers</topic><topic>Operations Research</topic><topic>Optimization</topic><topic>Partial differential equations</topic><topic>Traffic assignment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Peng-Jie</creatorcontrib><creatorcontrib>Jian, Jin-Bao</creatorcontrib><creatorcontrib>Shao, Hu</creatorcontrib><creatorcontrib>Wang, Xiao-Quan</creatorcontrib><creatorcontrib>Xu, Jia-Wei</creatorcontrib><creatorcontrib>Wu, Xiao-Yu</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Operations Research Society of China (Internet)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Peng-Jie</au><au>Jian, Jin-Bao</au><au>Shao, Hu</au><au>Wang, Xiao-Quan</au><au>Xu, Jia-Wei</au><au>Wu, Xiao-Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bregman-Style Improved ADMM and its Linearized Version in the Nonconvex Setting: Convergence and Rate Analyses</atitle><jtitle>Journal of the Operations Research Society of China (Internet)</jtitle><stitle>J. Oper. Res. Soc. China</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>12</volume><issue>2</issue><spage>298</spage><epage>340</epage><pages>298-340</pages><issn>2194-668X</issn><eissn>2194-6698</eissn><abstract>This work explores a family of two-block nonconvex optimization problems subject to linear constraints. We first introduce a simple but universal Bregman-style improved alternating direction method of multipliers (ADMM) based on the iteration framework of ADMM and the Bregman distance. Then, we utilize the smooth performance of one of the components to develop a linearized version of it. Compared to the traditional ADMM, both proposed methods integrate a convex combination strategy into the multiplier update step. For each proposed method, we demonstrate the convergence of the entire iteration sequence to a unique critical point of the augmented Lagrangian function utilizing the powerful Kurdyka–Łojasiewicz property, and we also derive convergence rates for both the sequence of merit function values and the iteration sequence. Finally, some numerical results show that the proposed methods are effective and encouraging for the Lasso model.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40305-023-00535-8</doi><tpages>43</tpages><orcidid>https://orcid.org/0000-0001-8048-7397</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2194-668X
ispartof Journal of the Operations Research Society of China (Internet), 2024-06, Vol.12 (2), p.298-340
issn 2194-668X
2194-6698
language eng
recordid cdi_proquest_journals_3056250157
source Springer Nature - Complete Springer Journals
subjects Approximation
Convergence
Critical point
Iterative methods
Lagrange multiplier
Lagrangian function
Linearization
Management Science
Mathematics
Mathematics and Statistics
Multipliers
Operations Research
Optimization
Partial differential equations
Traffic assignment
title A Bregman-Style Improved ADMM and its Linearized Version in the Nonconvex Setting: Convergence and Rate Analyses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T04%3A46%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bregman-Style%20Improved%20ADMM%20and%20its%20Linearized%20Version%20in%20the%20Nonconvex%20Setting:%20Convergence%20and%20Rate%20Analyses&rft.jtitle=Journal%20of%20the%20Operations%20Research%20Society%20of%20China%20(Internet)&rft.au=Liu,%20Peng-Jie&rft.date=2024-06-01&rft.volume=12&rft.issue=2&rft.spage=298&rft.epage=340&rft.pages=298-340&rft.issn=2194-668X&rft.eissn=2194-6698&rft_id=info:doi/10.1007/s40305-023-00535-8&rft_dat=%3Cproquest_cross%3E3056250157%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3056250157&rft_id=info:pmid/&rfr_iscdi=true