Building Edge Detection Technology From Remote Sensing Image Based On NSCT And Tensor Voting
An edge detection technology based on the combination of non-downsampling contour wave transform (NSCT) and tensor voting is proposed, which aims to obtain more accurate and detailed edge information of buildings in remote sensing images. Firstly, NSCT is used for image decomposition to obtain the s...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2024-05, Vol.2759 (1), p.12011 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12011 |
container_title | Journal of physics. Conference series |
container_volume | 2759 |
creator | Wu, Yingbin Zhao, Peng Zhou, Mingquan Geng, Shengling Zhang, Dan |
description | An edge detection technology based on the combination of non-downsampling contour wave transform (NSCT) and tensor voting is proposed, which aims to obtain more accurate and detailed edge information of buildings in remote sensing images. Firstly, NSCT is used for image decomposition to obtain the subband frequency information of different scales and angles. Then, position encoding is performed on these subband coefficients to obtain second-order symmetric tensors at the corresponding positions. Tensors of different scales and angles at the same position are weighted and summed to complete feature fusion. Finally, the edge features of the image are obtained based on tensor voting theory. The experimental results show that compared to common edge detection technologies, such as Canny, Fast Edge (Fast edge detection using structured forests) and HED (Holistically-Nested Edge Detection), our method can more accurately and intensively reflect the boundaries of buildings and the edge information of roofs, providing better support for the analysis of building types and architectural styles. Compared to the HED method, which is based on deep learning, our method improves PSNR and SSIM metrics by 0.98 and 0.03, respectively. |
doi_str_mv | 10.1088/1742-6596/2759/1/012011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3056216122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3056216122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2741-6cd113112ac34831ac15964014ef3428a173cdf5ed95fefe711f7332b81f26283</originalsourceid><addsrcrecordid>eNqFkFtLwzAYQIsoOKe_wYBvwmy-pLc9bnXTyXDipk9CqLnMjjWpSfewf29KZSII5iWBnPMlnCC4BHwDOMtCSCMySOJhEpI0HoYQYiAY4CjoHW6OD-csOw3OnNtgTP1Ke8HbeFduRanXaCLWEt3KRvKmNBqtJP_QZmvWezS1pkLPsjKNREupXUvPqsLj48JJgRYaPS7zFRpp4TXtjEWvpvHUeXCiiq2TF997P3iZTlb5_WC-uJvlo_mAkzSCQcIFAAUgBadRRqHg4D8dYYikohHJCkgpFyqWYhgrqWQKoFJKyXsGiiQko_3gqptbW_O5k65hG7Oz2j_JKI4TAgkQ4qm0o7g1zlmpWG3LqrB7Bpi1KVkbibXBWJuSAetSepN2Zmnqn9H_W9d_WA9P-fI3yGqh6BfENYDo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3056216122</pqid></control><display><type>article</type><title>Building Edge Detection Technology From Remote Sensing Image Based On NSCT And Tensor Voting</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Wu, Yingbin ; Zhao, Peng ; Zhou, Mingquan ; Geng, Shengling ; Zhang, Dan</creator><creatorcontrib>Wu, Yingbin ; Zhao, Peng ; Zhou, Mingquan ; Geng, Shengling ; Zhang, Dan</creatorcontrib><description>An edge detection technology based on the combination of non-downsampling contour wave transform (NSCT) and tensor voting is proposed, which aims to obtain more accurate and detailed edge information of buildings in remote sensing images. Firstly, NSCT is used for image decomposition to obtain the subband frequency information of different scales and angles. Then, position encoding is performed on these subband coefficients to obtain second-order symmetric tensors at the corresponding positions. Tensors of different scales and angles at the same position are weighted and summed to complete feature fusion. Finally, the edge features of the image are obtained based on tensor voting theory. The experimental results show that compared to common edge detection technologies, such as Canny, Fast Edge (Fast edge detection using structured forests) and HED (Holistically-Nested Edge Detection), our method can more accurately and intensively reflect the boundaries of buildings and the edge information of roofs, providing better support for the analysis of building types and architectural styles. Compared to the HED method, which is based on deep learning, our method improves PSNR and SSIM metrics by 0.98 and 0.03, respectively.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/2759/1/012011</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Buildings ; Edge detection ; Remote sensing ; Tensors</subject><ispartof>Journal of physics. Conference series, 2024-05, Vol.2759 (1), p.12011</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2741-6cd113112ac34831ac15964014ef3428a173cdf5ed95fefe711f7332b81f26283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/2759/1/012011/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27903,27904,38847,38869,53818,53845</link.rule.ids></links><search><creatorcontrib>Wu, Yingbin</creatorcontrib><creatorcontrib>Zhao, Peng</creatorcontrib><creatorcontrib>Zhou, Mingquan</creatorcontrib><creatorcontrib>Geng, Shengling</creatorcontrib><creatorcontrib>Zhang, Dan</creatorcontrib><title>Building Edge Detection Technology From Remote Sensing Image Based On NSCT And Tensor Voting</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>An edge detection technology based on the combination of non-downsampling contour wave transform (NSCT) and tensor voting is proposed, which aims to obtain more accurate and detailed edge information of buildings in remote sensing images. Firstly, NSCT is used for image decomposition to obtain the subband frequency information of different scales and angles. Then, position encoding is performed on these subband coefficients to obtain second-order symmetric tensors at the corresponding positions. Tensors of different scales and angles at the same position are weighted and summed to complete feature fusion. Finally, the edge features of the image are obtained based on tensor voting theory. The experimental results show that compared to common edge detection technologies, such as Canny, Fast Edge (Fast edge detection using structured forests) and HED (Holistically-Nested Edge Detection), our method can more accurately and intensively reflect the boundaries of buildings and the edge information of roofs, providing better support for the analysis of building types and architectural styles. Compared to the HED method, which is based on deep learning, our method improves PSNR and SSIM metrics by 0.98 and 0.03, respectively.</description><subject>Buildings</subject><subject>Edge detection</subject><subject>Remote sensing</subject><subject>Tensors</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkFtLwzAYQIsoOKe_wYBvwmy-pLc9bnXTyXDipk9CqLnMjjWpSfewf29KZSII5iWBnPMlnCC4BHwDOMtCSCMySOJhEpI0HoYQYiAY4CjoHW6OD-csOw3OnNtgTP1Ke8HbeFduRanXaCLWEt3KRvKmNBqtJP_QZmvWezS1pkLPsjKNREupXUvPqsLj48JJgRYaPS7zFRpp4TXtjEWvpvHUeXCiiq2TF997P3iZTlb5_WC-uJvlo_mAkzSCQcIFAAUgBadRRqHg4D8dYYikohHJCkgpFyqWYhgrqWQKoFJKyXsGiiQko_3gqptbW_O5k65hG7Oz2j_JKI4TAgkQ4qm0o7g1zlmpWG3LqrB7Bpi1KVkbibXBWJuSAetSepN2Zmnqn9H_W9d_WA9P-fI3yGqh6BfENYDo</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Wu, Yingbin</creator><creator>Zhao, Peng</creator><creator>Zhou, Mingquan</creator><creator>Geng, Shengling</creator><creator>Zhang, Dan</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20240501</creationdate><title>Building Edge Detection Technology From Remote Sensing Image Based On NSCT And Tensor Voting</title><author>Wu, Yingbin ; Zhao, Peng ; Zhou, Mingquan ; Geng, Shengling ; Zhang, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2741-6cd113112ac34831ac15964014ef3428a173cdf5ed95fefe711f7332b81f26283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Buildings</topic><topic>Edge detection</topic><topic>Remote sensing</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Yingbin</creatorcontrib><creatorcontrib>Zhao, Peng</creatorcontrib><creatorcontrib>Zhou, Mingquan</creatorcontrib><creatorcontrib>Geng, Shengling</creatorcontrib><creatorcontrib>Zhang, Dan</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Yingbin</au><au>Zhao, Peng</au><au>Zhou, Mingquan</au><au>Geng, Shengling</au><au>Zhang, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Building Edge Detection Technology From Remote Sensing Image Based On NSCT And Tensor Voting</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>2759</volume><issue>1</issue><spage>12011</spage><pages>12011-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>An edge detection technology based on the combination of non-downsampling contour wave transform (NSCT) and tensor voting is proposed, which aims to obtain more accurate and detailed edge information of buildings in remote sensing images. Firstly, NSCT is used for image decomposition to obtain the subband frequency information of different scales and angles. Then, position encoding is performed on these subband coefficients to obtain second-order symmetric tensors at the corresponding positions. Tensors of different scales and angles at the same position are weighted and summed to complete feature fusion. Finally, the edge features of the image are obtained based on tensor voting theory. The experimental results show that compared to common edge detection technologies, such as Canny, Fast Edge (Fast edge detection using structured forests) and HED (Holistically-Nested Edge Detection), our method can more accurately and intensively reflect the boundaries of buildings and the edge information of roofs, providing better support for the analysis of building types and architectural styles. Compared to the HED method, which is based on deep learning, our method improves PSNR and SSIM metrics by 0.98 and 0.03, respectively.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/2759/1/012011</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2024-05, Vol.2759 (1), p.12011 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_3056216122 |
source | IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Buildings Edge detection Remote sensing Tensors |
title | Building Edge Detection Technology From Remote Sensing Image Based On NSCT And Tensor Voting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T23%3A44%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Building%20Edge%20Detection%20Technology%20From%20Remote%20Sensing%20Image%20Based%20On%20NSCT%20And%20Tensor%20Voting&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Wu,%20Yingbin&rft.date=2024-05-01&rft.volume=2759&rft.issue=1&rft.spage=12011&rft.pages=12011-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/2759/1/012011&rft_dat=%3Cproquest_cross%3E3056216122%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3056216122&rft_id=info:pmid/&rfr_iscdi=true |