Building Edge Detection Technology From Remote Sensing Image Based On NSCT And Tensor Voting

An edge detection technology based on the combination of non-downsampling contour wave transform (NSCT) and tensor voting is proposed, which aims to obtain more accurate and detailed edge information of buildings in remote sensing images. Firstly, NSCT is used for image decomposition to obtain the s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2024-05, Vol.2759 (1), p.12011
Hauptverfasser: Wu, Yingbin, Zhao, Peng, Zhou, Mingquan, Geng, Shengling, Zhang, Dan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12011
container_title Journal of physics. Conference series
container_volume 2759
creator Wu, Yingbin
Zhao, Peng
Zhou, Mingquan
Geng, Shengling
Zhang, Dan
description An edge detection technology based on the combination of non-downsampling contour wave transform (NSCT) and tensor voting is proposed, which aims to obtain more accurate and detailed edge information of buildings in remote sensing images. Firstly, NSCT is used for image decomposition to obtain the subband frequency information of different scales and angles. Then, position encoding is performed on these subband coefficients to obtain second-order symmetric tensors at the corresponding positions. Tensors of different scales and angles at the same position are weighted and summed to complete feature fusion. Finally, the edge features of the image are obtained based on tensor voting theory. The experimental results show that compared to common edge detection technologies, such as Canny, Fast Edge (Fast edge detection using structured forests) and HED (Holistically-Nested Edge Detection), our method can more accurately and intensively reflect the boundaries of buildings and the edge information of roofs, providing better support for the analysis of building types and architectural styles. Compared to the HED method, which is based on deep learning, our method improves PSNR and SSIM metrics by 0.98 and 0.03, respectively.
doi_str_mv 10.1088/1742-6596/2759/1/012011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3056216122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3056216122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2741-6cd113112ac34831ac15964014ef3428a173cdf5ed95fefe711f7332b81f26283</originalsourceid><addsrcrecordid>eNqFkFtLwzAYQIsoOKe_wYBvwmy-pLc9bnXTyXDipk9CqLnMjjWpSfewf29KZSII5iWBnPMlnCC4BHwDOMtCSCMySOJhEpI0HoYQYiAY4CjoHW6OD-csOw3OnNtgTP1Ke8HbeFduRanXaCLWEt3KRvKmNBqtJP_QZmvWezS1pkLPsjKNREupXUvPqsLj48JJgRYaPS7zFRpp4TXtjEWvpvHUeXCiiq2TF997P3iZTlb5_WC-uJvlo_mAkzSCQcIFAAUgBadRRqHg4D8dYYikohHJCkgpFyqWYhgrqWQKoFJKyXsGiiQko_3gqptbW_O5k65hG7Oz2j_JKI4TAgkQ4qm0o7g1zlmpWG3LqrB7Bpi1KVkbibXBWJuSAetSepN2Zmnqn9H_W9d_WA9P-fI3yGqh6BfENYDo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3056216122</pqid></control><display><type>article</type><title>Building Edge Detection Technology From Remote Sensing Image Based On NSCT And Tensor Voting</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Wu, Yingbin ; Zhao, Peng ; Zhou, Mingquan ; Geng, Shengling ; Zhang, Dan</creator><creatorcontrib>Wu, Yingbin ; Zhao, Peng ; Zhou, Mingquan ; Geng, Shengling ; Zhang, Dan</creatorcontrib><description>An edge detection technology based on the combination of non-downsampling contour wave transform (NSCT) and tensor voting is proposed, which aims to obtain more accurate and detailed edge information of buildings in remote sensing images. Firstly, NSCT is used for image decomposition to obtain the subband frequency information of different scales and angles. Then, position encoding is performed on these subband coefficients to obtain second-order symmetric tensors at the corresponding positions. Tensors of different scales and angles at the same position are weighted and summed to complete feature fusion. Finally, the edge features of the image are obtained based on tensor voting theory. The experimental results show that compared to common edge detection technologies, such as Canny, Fast Edge (Fast edge detection using structured forests) and HED (Holistically-Nested Edge Detection), our method can more accurately and intensively reflect the boundaries of buildings and the edge information of roofs, providing better support for the analysis of building types and architectural styles. Compared to the HED method, which is based on deep learning, our method improves PSNR and SSIM metrics by 0.98 and 0.03, respectively.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/2759/1/012011</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Buildings ; Edge detection ; Remote sensing ; Tensors</subject><ispartof>Journal of physics. Conference series, 2024-05, Vol.2759 (1), p.12011</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2741-6cd113112ac34831ac15964014ef3428a173cdf5ed95fefe711f7332b81f26283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/2759/1/012011/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27903,27904,38847,38869,53818,53845</link.rule.ids></links><search><creatorcontrib>Wu, Yingbin</creatorcontrib><creatorcontrib>Zhao, Peng</creatorcontrib><creatorcontrib>Zhou, Mingquan</creatorcontrib><creatorcontrib>Geng, Shengling</creatorcontrib><creatorcontrib>Zhang, Dan</creatorcontrib><title>Building Edge Detection Technology From Remote Sensing Image Based On NSCT And Tensor Voting</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>An edge detection technology based on the combination of non-downsampling contour wave transform (NSCT) and tensor voting is proposed, which aims to obtain more accurate and detailed edge information of buildings in remote sensing images. Firstly, NSCT is used for image decomposition to obtain the subband frequency information of different scales and angles. Then, position encoding is performed on these subband coefficients to obtain second-order symmetric tensors at the corresponding positions. Tensors of different scales and angles at the same position are weighted and summed to complete feature fusion. Finally, the edge features of the image are obtained based on tensor voting theory. The experimental results show that compared to common edge detection technologies, such as Canny, Fast Edge (Fast edge detection using structured forests) and HED (Holistically-Nested Edge Detection), our method can more accurately and intensively reflect the boundaries of buildings and the edge information of roofs, providing better support for the analysis of building types and architectural styles. Compared to the HED method, which is based on deep learning, our method improves PSNR and SSIM metrics by 0.98 and 0.03, respectively.</description><subject>Buildings</subject><subject>Edge detection</subject><subject>Remote sensing</subject><subject>Tensors</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkFtLwzAYQIsoOKe_wYBvwmy-pLc9bnXTyXDipk9CqLnMjjWpSfewf29KZSII5iWBnPMlnCC4BHwDOMtCSCMySOJhEpI0HoYQYiAY4CjoHW6OD-csOw3OnNtgTP1Ke8HbeFduRanXaCLWEt3KRvKmNBqtJP_QZmvWezS1pkLPsjKNREupXUvPqsLj48JJgRYaPS7zFRpp4TXtjEWvpvHUeXCiiq2TF997P3iZTlb5_WC-uJvlo_mAkzSCQcIFAAUgBadRRqHg4D8dYYikohHJCkgpFyqWYhgrqWQKoFJKyXsGiiQko_3gqptbW_O5k65hG7Oz2j_JKI4TAgkQ4qm0o7g1zlmpWG3LqrB7Bpi1KVkbibXBWJuSAetSepN2Zmnqn9H_W9d_WA9P-fI3yGqh6BfENYDo</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Wu, Yingbin</creator><creator>Zhao, Peng</creator><creator>Zhou, Mingquan</creator><creator>Geng, Shengling</creator><creator>Zhang, Dan</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20240501</creationdate><title>Building Edge Detection Technology From Remote Sensing Image Based On NSCT And Tensor Voting</title><author>Wu, Yingbin ; Zhao, Peng ; Zhou, Mingquan ; Geng, Shengling ; Zhang, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2741-6cd113112ac34831ac15964014ef3428a173cdf5ed95fefe711f7332b81f26283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Buildings</topic><topic>Edge detection</topic><topic>Remote sensing</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Yingbin</creatorcontrib><creatorcontrib>Zhao, Peng</creatorcontrib><creatorcontrib>Zhou, Mingquan</creatorcontrib><creatorcontrib>Geng, Shengling</creatorcontrib><creatorcontrib>Zhang, Dan</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Yingbin</au><au>Zhao, Peng</au><au>Zhou, Mingquan</au><au>Geng, Shengling</au><au>Zhang, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Building Edge Detection Technology From Remote Sensing Image Based On NSCT And Tensor Voting</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>2759</volume><issue>1</issue><spage>12011</spage><pages>12011-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>An edge detection technology based on the combination of non-downsampling contour wave transform (NSCT) and tensor voting is proposed, which aims to obtain more accurate and detailed edge information of buildings in remote sensing images. Firstly, NSCT is used for image decomposition to obtain the subband frequency information of different scales and angles. Then, position encoding is performed on these subband coefficients to obtain second-order symmetric tensors at the corresponding positions. Tensors of different scales and angles at the same position are weighted and summed to complete feature fusion. Finally, the edge features of the image are obtained based on tensor voting theory. The experimental results show that compared to common edge detection technologies, such as Canny, Fast Edge (Fast edge detection using structured forests) and HED (Holistically-Nested Edge Detection), our method can more accurately and intensively reflect the boundaries of buildings and the edge information of roofs, providing better support for the analysis of building types and architectural styles. Compared to the HED method, which is based on deep learning, our method improves PSNR and SSIM metrics by 0.98 and 0.03, respectively.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/2759/1/012011</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2024-05, Vol.2759 (1), p.12011
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_3056216122
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Buildings
Edge detection
Remote sensing
Tensors
title Building Edge Detection Technology From Remote Sensing Image Based On NSCT And Tensor Voting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T23%3A44%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Building%20Edge%20Detection%20Technology%20From%20Remote%20Sensing%20Image%20Based%20On%20NSCT%20And%20Tensor%20Voting&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Wu,%20Yingbin&rft.date=2024-05-01&rft.volume=2759&rft.issue=1&rft.spage=12011&rft.pages=12011-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/2759/1/012011&rft_dat=%3Cproquest_cross%3E3056216122%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3056216122&rft_id=info:pmid/&rfr_iscdi=true