Meta Heuristic Technique with Reinforcement Learning for Node Deployment in Wireless Sensor Networks
Wireless Sensor Networks (WSNs) are vital in applications like environmental monitoring, smart homes, and battlefield surveillance. Comprising small devices with limited resources, WSNs require efficient node deployment for power optimization and prolonged network lifetime, ensuring sufficient cover...
Gespeichert in:
Veröffentlicht in: | SN computer science 2024-06, Vol.5 (5), p.554, Article 554 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 554 |
container_title | SN computer science |
container_volume | 5 |
creator | Kusuma, S. M. Veena, K. N. Kumar, B. P. Vijaya Naresh, E. Marianne, Lobo Athena |
description | Wireless Sensor Networks (WSNs) are vital in applications like environmental monitoring, smart homes, and battlefield surveillance. Comprising small devices with limited resources, WSNs require efficient node deployment for power optimization and prolonged network lifetime, ensuring sufficient coverage and connectivity. This study introduces an Intelligent Satin Bower Bird Optimizer augmented with reinforcement learning (ISBO-RL), enhancing coverage and connectivity. ISBO-RL focuses on optimal sensor placement for improved coverage and connectivity, using an Optimum Position Finding (OPF) method to identify key sensor node locations. Reinforcement learning is integrated into the ISBO algorithm, allowing nodes to adapt based on performance and changing conditions. Experimental results on diverse platforms highlight ISBO-RL’s efficacy and its superior coverage and connectivity performance as compared to other algorithms. ISBO-RL represents a significant advancement in the field of Wireless Sensor Networks, offering a promising solution to address the challenges of efficient node deployment and network optimization in various critical applications. |
doi_str_mv | 10.1007/s42979-024-02906-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3056070497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3056070497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2291-b927ceafa1d14cce7dc38739d33faf57c83a47cd5d638de89f123a1d084a23a13</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhhdRsNT-AU8Bz6v52s3mKPWjQlXQiscQk9k2tc3WZEvpvzfbFfTkYZhh5pl3mDfLzgm-JBiLq8ipFDLHlKeQuMzJUTagZUnySmJx_Kc-zUYxLjHGtMCcl8Ugs4_QajSBbXCxdQbNwCy8-9oC2rl2gV7A-boJBtbgWzQFHbzzc5Ra6KmxgG5gs2r2h6Hz6N0FWEGM6BV87BBod034jGfZSa1XEUY_eZi93d3OxpN8-nz_ML6e5oZSSfIPSYUBXWtiCTcGhDWsEkxaxmpdF8JUTHNhbGFLVlmoZE0oSzCuuO4KNswuet1NaNILsVXLZht8OqkYLkosMJciUbSnTGhiDFCrTXBrHfaKYNUZqnpDVTJUHQxVnTTrl2KC_RzCr_Q_W9-UKXnI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3056070497</pqid></control><display><type>article</type><title>Meta Heuristic Technique with Reinforcement Learning for Node Deployment in Wireless Sensor Networks</title><source>SpringerLink Journals</source><creator>Kusuma, S. M. ; Veena, K. N. ; Kumar, B. P. Vijaya ; Naresh, E. ; Marianne, Lobo Athena</creator><creatorcontrib>Kusuma, S. M. ; Veena, K. N. ; Kumar, B. P. Vijaya ; Naresh, E. ; Marianne, Lobo Athena</creatorcontrib><description>Wireless Sensor Networks (WSNs) are vital in applications like environmental monitoring, smart homes, and battlefield surveillance. Comprising small devices with limited resources, WSNs require efficient node deployment for power optimization and prolonged network lifetime, ensuring sufficient coverage and connectivity. This study introduces an Intelligent Satin Bower Bird Optimizer augmented with reinforcement learning (ISBO-RL), enhancing coverage and connectivity. ISBO-RL focuses on optimal sensor placement for improved coverage and connectivity, using an Optimum Position Finding (OPF) method to identify key sensor node locations. Reinforcement learning is integrated into the ISBO algorithm, allowing nodes to adapt based on performance and changing conditions. Experimental results on diverse platforms highlight ISBO-RL’s efficacy and its superior coverage and connectivity performance as compared to other algorithms. ISBO-RL represents a significant advancement in the field of Wireless Sensor Networks, offering a promising solution to address the challenges of efficient node deployment and network optimization in various critical applications.</description><identifier>ISSN: 2661-8907</identifier><identifier>ISSN: 2662-995X</identifier><identifier>EISSN: 2661-8907</identifier><identifier>DOI: 10.1007/s42979-024-02906-1</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Advances in Computational Approaches for Image Processing ; Algorithms ; Business metrics ; Cloud Applications and Network Security ; Computer Imaging ; Computer Science ; Computer Systems Organization and Communication Networks ; Connectivity ; Data Structures and Information Theory ; Environmental monitoring ; Genetic algorithms ; Heuristic ; Identification methods ; Information Systems and Communication Service ; Nodes ; Optimization ; Original Research ; Pattern Recognition and Graphics ; Sensors ; Simulation ; Smart buildings ; Software Engineering/Programming and Operating Systems ; Vision ; Wireless Networks ; Wireless sensor networks</subject><ispartof>SN computer science, 2024-06, Vol.5 (5), p.554, Article 554</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2291-b927ceafa1d14cce7dc38739d33faf57c83a47cd5d638de89f123a1d084a23a13</cites><orcidid>0000-0002-8368-836X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s42979-024-02906-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s42979-024-02906-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kusuma, S. M.</creatorcontrib><creatorcontrib>Veena, K. N.</creatorcontrib><creatorcontrib>Kumar, B. P. Vijaya</creatorcontrib><creatorcontrib>Naresh, E.</creatorcontrib><creatorcontrib>Marianne, Lobo Athena</creatorcontrib><title>Meta Heuristic Technique with Reinforcement Learning for Node Deployment in Wireless Sensor Networks</title><title>SN computer science</title><addtitle>SN COMPUT. SCI</addtitle><description>Wireless Sensor Networks (WSNs) are vital in applications like environmental monitoring, smart homes, and battlefield surveillance. Comprising small devices with limited resources, WSNs require efficient node deployment for power optimization and prolonged network lifetime, ensuring sufficient coverage and connectivity. This study introduces an Intelligent Satin Bower Bird Optimizer augmented with reinforcement learning (ISBO-RL), enhancing coverage and connectivity. ISBO-RL focuses on optimal sensor placement for improved coverage and connectivity, using an Optimum Position Finding (OPF) method to identify key sensor node locations. Reinforcement learning is integrated into the ISBO algorithm, allowing nodes to adapt based on performance and changing conditions. Experimental results on diverse platforms highlight ISBO-RL’s efficacy and its superior coverage and connectivity performance as compared to other algorithms. ISBO-RL represents a significant advancement in the field of Wireless Sensor Networks, offering a promising solution to address the challenges of efficient node deployment and network optimization in various critical applications.</description><subject>Advances in Computational Approaches for Image Processing</subject><subject>Algorithms</subject><subject>Business metrics</subject><subject>Cloud Applications and Network Security</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Connectivity</subject><subject>Data Structures and Information Theory</subject><subject>Environmental monitoring</subject><subject>Genetic algorithms</subject><subject>Heuristic</subject><subject>Identification methods</subject><subject>Information Systems and Communication Service</subject><subject>Nodes</subject><subject>Optimization</subject><subject>Original Research</subject><subject>Pattern Recognition and Graphics</subject><subject>Sensors</subject><subject>Simulation</subject><subject>Smart buildings</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Vision</subject><subject>Wireless Networks</subject><subject>Wireless sensor networks</subject><issn>2661-8907</issn><issn>2662-995X</issn><issn>2661-8907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1LAzEQhhdRsNT-AU8Bz6v52s3mKPWjQlXQiscQk9k2tc3WZEvpvzfbFfTkYZhh5pl3mDfLzgm-JBiLq8ipFDLHlKeQuMzJUTagZUnySmJx_Kc-zUYxLjHGtMCcl8Ugs4_QajSBbXCxdQbNwCy8-9oC2rl2gV7A-boJBtbgWzQFHbzzc5Ra6KmxgG5gs2r2h6Hz6N0FWEGM6BV87BBod034jGfZSa1XEUY_eZi93d3OxpN8-nz_ML6e5oZSSfIPSYUBXWtiCTcGhDWsEkxaxmpdF8JUTHNhbGFLVlmoZE0oSzCuuO4KNswuet1NaNILsVXLZht8OqkYLkosMJciUbSnTGhiDFCrTXBrHfaKYNUZqnpDVTJUHQxVnTTrl2KC_RzCr_Q_W9-UKXnI</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Kusuma, S. M.</creator><creator>Veena, K. N.</creator><creator>Kumar, B. P. Vijaya</creator><creator>Naresh, E.</creator><creator>Marianne, Lobo Athena</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-8368-836X</orcidid></search><sort><creationdate>20240601</creationdate><title>Meta Heuristic Technique with Reinforcement Learning for Node Deployment in Wireless Sensor Networks</title><author>Kusuma, S. M. ; Veena, K. N. ; Kumar, B. P. Vijaya ; Naresh, E. ; Marianne, Lobo Athena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2291-b927ceafa1d14cce7dc38739d33faf57c83a47cd5d638de89f123a1d084a23a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Advances in Computational Approaches for Image Processing</topic><topic>Algorithms</topic><topic>Business metrics</topic><topic>Cloud Applications and Network Security</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Connectivity</topic><topic>Data Structures and Information Theory</topic><topic>Environmental monitoring</topic><topic>Genetic algorithms</topic><topic>Heuristic</topic><topic>Identification methods</topic><topic>Information Systems and Communication Service</topic><topic>Nodes</topic><topic>Optimization</topic><topic>Original Research</topic><topic>Pattern Recognition and Graphics</topic><topic>Sensors</topic><topic>Simulation</topic><topic>Smart buildings</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Vision</topic><topic>Wireless Networks</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kusuma, S. M.</creatorcontrib><creatorcontrib>Veena, K. N.</creatorcontrib><creatorcontrib>Kumar, B. P. Vijaya</creatorcontrib><creatorcontrib>Naresh, E.</creatorcontrib><creatorcontrib>Marianne, Lobo Athena</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>SN computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kusuma, S. M.</au><au>Veena, K. N.</au><au>Kumar, B. P. Vijaya</au><au>Naresh, E.</au><au>Marianne, Lobo Athena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Meta Heuristic Technique with Reinforcement Learning for Node Deployment in Wireless Sensor Networks</atitle><jtitle>SN computer science</jtitle><stitle>SN COMPUT. SCI</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>5</volume><issue>5</issue><spage>554</spage><pages>554-</pages><artnum>554</artnum><issn>2661-8907</issn><issn>2662-995X</issn><eissn>2661-8907</eissn><abstract>Wireless Sensor Networks (WSNs) are vital in applications like environmental monitoring, smart homes, and battlefield surveillance. Comprising small devices with limited resources, WSNs require efficient node deployment for power optimization and prolonged network lifetime, ensuring sufficient coverage and connectivity. This study introduces an Intelligent Satin Bower Bird Optimizer augmented with reinforcement learning (ISBO-RL), enhancing coverage and connectivity. ISBO-RL focuses on optimal sensor placement for improved coverage and connectivity, using an Optimum Position Finding (OPF) method to identify key sensor node locations. Reinforcement learning is integrated into the ISBO algorithm, allowing nodes to adapt based on performance and changing conditions. Experimental results on diverse platforms highlight ISBO-RL’s efficacy and its superior coverage and connectivity performance as compared to other algorithms. ISBO-RL represents a significant advancement in the field of Wireless Sensor Networks, offering a promising solution to address the challenges of efficient node deployment and network optimization in various critical applications.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s42979-024-02906-1</doi><orcidid>https://orcid.org/0000-0002-8368-836X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2661-8907 |
ispartof | SN computer science, 2024-06, Vol.5 (5), p.554, Article 554 |
issn | 2661-8907 2662-995X 2661-8907 |
language | eng |
recordid | cdi_proquest_journals_3056070497 |
source | SpringerLink Journals |
subjects | Advances in Computational Approaches for Image Processing Algorithms Business metrics Cloud Applications and Network Security Computer Imaging Computer Science Computer Systems Organization and Communication Networks Connectivity Data Structures and Information Theory Environmental monitoring Genetic algorithms Heuristic Identification methods Information Systems and Communication Service Nodes Optimization Original Research Pattern Recognition and Graphics Sensors Simulation Smart buildings Software Engineering/Programming and Operating Systems Vision Wireless Networks Wireless sensor networks |
title | Meta Heuristic Technique with Reinforcement Learning for Node Deployment in Wireless Sensor Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A23%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Meta%20Heuristic%20Technique%20with%20Reinforcement%20Learning%20for%20Node%20Deployment%20in%20Wireless%20Sensor%20Networks&rft.jtitle=SN%20computer%20science&rft.au=Kusuma,%20S.%20M.&rft.date=2024-06-01&rft.volume=5&rft.issue=5&rft.spage=554&rft.pages=554-&rft.artnum=554&rft.issn=2661-8907&rft.eissn=2661-8907&rft_id=info:doi/10.1007/s42979-024-02906-1&rft_dat=%3Cproquest_cross%3E3056070497%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3056070497&rft_id=info:pmid/&rfr_iscdi=true |