Design of Cost Efficient VBIR Technique Using ICA and IVCA

With an emphasis on early-stage contrast agent transit through tumour vasculature, this study presents Adaptive Complex Independent Components Analysis (ACICA) as a unique method for evaluating intravascular responsiveness in prostatic tissue. Furthermore, a new SVM clustering method is introduced t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SN computer science 2024-06, Vol.5 (5), p.560, Article 560
Hauptverfasser: Pradeep Kumar, B. P., Srinidhi, N. N., Shiva Darshan, S. L., Naresh, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 560
container_title SN computer science
container_volume 5
creator Pradeep Kumar, B. P.
Srinidhi, N. N.
Shiva Darshan, S. L.
Naresh, E.
description With an emphasis on early-stage contrast agent transit through tumour vasculature, this study presents Adaptive Complex Independent Components Analysis (ACICA) as a unique method for evaluating intravascular responsiveness in prostatic tissue. Furthermore, a new SVM clustering method is introduced that outperforms the conventional k-means clustering for image retrieval based on vision. The study emphasises how dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) may be improved in conjunction with quantitative analysis. Within the field of DCE-MRI, ACICA stands out as a unique intravascular attention measurer. Utilising the spatial independence of extravascular and intravascular magnetic resonance imaging (MR) data, ACICA offers a strong foundation for DCE-MRI image analysis. It incorporates pharmacokinetic modelling to optimise the time lag, especially useful for arterial curves, and a reference region (RR)-based technique to adjust the intravascular concentration curve. The model's evaluation yields outstanding results, with recall and accuracy ranging from 83 to 99% and 82.8% to 99.6%, respectively. The average recall and precision across datasets are 92.86% and 92.82%).All things considered, this study demonstrates the effectiveness of ACICA in evaluating intravascular responsiveness and presents viable paths for enhancing clinical results and diagnostic precision in the treatment of prostate cancer.
doi_str_mv 10.1007/s42979-024-02936-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3056070493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3056070493</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2299-fc17b3220fa4b9a2f8c1cabf5e7ba7e45cf759eb88bc14f868d814dcc4aca3a93</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGr_gKeA59XJx24Sb3WtWigI0vYastmkbtFsTdqD_97UFfTkYZg5PPPO8CB0SeCaAIibxKkSqgDKcylWFeoEjWhVkUIqEKd_5nM0SWkLALQEzqtyhG7vXeo2Afce133a45n3ne1c2OP13fwFL519Dd3HweFV6sIGz-spNqHF83U9vUBn3rwlN_npY7R6mC3rp2Lx_Ji5RWEpVarwloiGUQre8EYZ6qUl1jS-dKIxwvHSelEq10jZWMK9rGQrCW-t5cYaZhQbo6shdxf7_Ena621_iCGf1AzKCgRwxTJFB8rGPqXovN7F7t3ET01AHzXpQZPOmvS3Jn2MZsNSynDYuPgb_c_WFy6aaHk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3056070493</pqid></control><display><type>article</type><title>Design of Cost Efficient VBIR Technique Using ICA and IVCA</title><source>Springer Nature - Complete Springer Journals</source><creator>Pradeep Kumar, B. P. ; Srinidhi, N. N. ; Shiva Darshan, S. L. ; Naresh, E.</creator><creatorcontrib>Pradeep Kumar, B. P. ; Srinidhi, N. N. ; Shiva Darshan, S. L. ; Naresh, E.</creatorcontrib><description>With an emphasis on early-stage contrast agent transit through tumour vasculature, this study presents Adaptive Complex Independent Components Analysis (ACICA) as a unique method for evaluating intravascular responsiveness in prostatic tissue. Furthermore, a new SVM clustering method is introduced that outperforms the conventional k-means clustering for image retrieval based on vision. The study emphasises how dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) may be improved in conjunction with quantitative analysis. Within the field of DCE-MRI, ACICA stands out as a unique intravascular attention measurer. Utilising the spatial independence of extravascular and intravascular magnetic resonance imaging (MR) data, ACICA offers a strong foundation for DCE-MRI image analysis. It incorporates pharmacokinetic modelling to optimise the time lag, especially useful for arterial curves, and a reference region (RR)-based technique to adjust the intravascular concentration curve. The model's evaluation yields outstanding results, with recall and accuracy ranging from 83 to 99% and 82.8% to 99.6%, respectively. The average recall and precision across datasets are 92.86% and 92.82%).All things considered, this study demonstrates the effectiveness of ACICA in evaluating intravascular responsiveness and presents viable paths for enhancing clinical results and diagnostic precision in the treatment of prostate cancer.</description><identifier>ISSN: 2661-8907</identifier><identifier>ISSN: 2662-995X</identifier><identifier>EISSN: 2661-8907</identifier><identifier>DOI: 10.1007/s42979-024-02936-9</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>AI Based Internet of Healthcare: Analysis and Future Perspectives ; Blood vessels ; Cancer therapies ; Cluster analysis ; Clustering ; Computer Imaging ; Computer Science ; Computer Systems Organization and Communication Networks ; Contrast agents ; Data Structures and Information Theory ; Disease ; Image analysis ; Image contrast ; Image databases ; Image enhancement ; Image retrieval ; Independent component analysis ; Information retrieval ; Information seeking behavior ; Information Systems and Communication Service ; Magnetic resonance imaging ; Measurement techniques ; Medical diagnosis ; Medical imaging ; Original Research ; Patients ; Pattern Recognition and Graphics ; Permeability ; Pharmacokinetics ; Prostate cancer ; R&amp;D ; Radiation ; Recall ; Research &amp; development ; Retrieval ; Software Engineering/Programming and Operating Systems ; Time lag ; Tomography ; Tumors ; Uniqueness ; Vector quantization ; Vision</subject><ispartof>SN computer science, 2024-06, Vol.5 (5), p.560, Article 560</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2299-fc17b3220fa4b9a2f8c1cabf5e7ba7e45cf759eb88bc14f868d814dcc4aca3a93</cites><orcidid>0000-0002-8368-836X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s42979-024-02936-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s42979-024-02936-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Pradeep Kumar, B. P.</creatorcontrib><creatorcontrib>Srinidhi, N. N.</creatorcontrib><creatorcontrib>Shiva Darshan, S. L.</creatorcontrib><creatorcontrib>Naresh, E.</creatorcontrib><title>Design of Cost Efficient VBIR Technique Using ICA and IVCA</title><title>SN computer science</title><addtitle>SN COMPUT. SCI</addtitle><description>With an emphasis on early-stage contrast agent transit through tumour vasculature, this study presents Adaptive Complex Independent Components Analysis (ACICA) as a unique method for evaluating intravascular responsiveness in prostatic tissue. Furthermore, a new SVM clustering method is introduced that outperforms the conventional k-means clustering for image retrieval based on vision. The study emphasises how dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) may be improved in conjunction with quantitative analysis. Within the field of DCE-MRI, ACICA stands out as a unique intravascular attention measurer. Utilising the spatial independence of extravascular and intravascular magnetic resonance imaging (MR) data, ACICA offers a strong foundation for DCE-MRI image analysis. It incorporates pharmacokinetic modelling to optimise the time lag, especially useful for arterial curves, and a reference region (RR)-based technique to adjust the intravascular concentration curve. The model's evaluation yields outstanding results, with recall and accuracy ranging from 83 to 99% and 82.8% to 99.6%, respectively. The average recall and precision across datasets are 92.86% and 92.82%).All things considered, this study demonstrates the effectiveness of ACICA in evaluating intravascular responsiveness and presents viable paths for enhancing clinical results and diagnostic precision in the treatment of prostate cancer.</description><subject>AI Based Internet of Healthcare: Analysis and Future Perspectives</subject><subject>Blood vessels</subject><subject>Cancer therapies</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Contrast agents</subject><subject>Data Structures and Information Theory</subject><subject>Disease</subject><subject>Image analysis</subject><subject>Image contrast</subject><subject>Image databases</subject><subject>Image enhancement</subject><subject>Image retrieval</subject><subject>Independent component analysis</subject><subject>Information retrieval</subject><subject>Information seeking behavior</subject><subject>Information Systems and Communication Service</subject><subject>Magnetic resonance imaging</subject><subject>Measurement techniques</subject><subject>Medical diagnosis</subject><subject>Medical imaging</subject><subject>Original Research</subject><subject>Patients</subject><subject>Pattern Recognition and Graphics</subject><subject>Permeability</subject><subject>Pharmacokinetics</subject><subject>Prostate cancer</subject><subject>R&amp;D</subject><subject>Radiation</subject><subject>Recall</subject><subject>Research &amp; development</subject><subject>Retrieval</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Time lag</subject><subject>Tomography</subject><subject>Tumors</subject><subject>Uniqueness</subject><subject>Vector quantization</subject><subject>Vision</subject><issn>2661-8907</issn><issn>2662-995X</issn><issn>2661-8907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1LAzEQhoMoWGr_gKeA59XJx24Sb3WtWigI0vYastmkbtFsTdqD_97UFfTkYZg5PPPO8CB0SeCaAIibxKkSqgDKcylWFeoEjWhVkUIqEKd_5nM0SWkLALQEzqtyhG7vXeo2Afce133a45n3ne1c2OP13fwFL519Dd3HweFV6sIGz-spNqHF83U9vUBn3rwlN_npY7R6mC3rp2Lx_Ji5RWEpVarwloiGUQre8EYZ6qUl1jS-dKIxwvHSelEq10jZWMK9rGQrCW-t5cYaZhQbo6shdxf7_Ena621_iCGf1AzKCgRwxTJFB8rGPqXovN7F7t3ET01AHzXpQZPOmvS3Jn2MZsNSynDYuPgb_c_WFy6aaHk</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Pradeep Kumar, B. P.</creator><creator>Srinidhi, N. N.</creator><creator>Shiva Darshan, S. L.</creator><creator>Naresh, E.</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-8368-836X</orcidid></search><sort><creationdate>20240601</creationdate><title>Design of Cost Efficient VBIR Technique Using ICA and IVCA</title><author>Pradeep Kumar, B. P. ; Srinidhi, N. N. ; Shiva Darshan, S. L. ; Naresh, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2299-fc17b3220fa4b9a2f8c1cabf5e7ba7e45cf759eb88bc14f868d814dcc4aca3a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>AI Based Internet of Healthcare: Analysis and Future Perspectives</topic><topic>Blood vessels</topic><topic>Cancer therapies</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Contrast agents</topic><topic>Data Structures and Information Theory</topic><topic>Disease</topic><topic>Image analysis</topic><topic>Image contrast</topic><topic>Image databases</topic><topic>Image enhancement</topic><topic>Image retrieval</topic><topic>Independent component analysis</topic><topic>Information retrieval</topic><topic>Information seeking behavior</topic><topic>Information Systems and Communication Service</topic><topic>Magnetic resonance imaging</topic><topic>Measurement techniques</topic><topic>Medical diagnosis</topic><topic>Medical imaging</topic><topic>Original Research</topic><topic>Patients</topic><topic>Pattern Recognition and Graphics</topic><topic>Permeability</topic><topic>Pharmacokinetics</topic><topic>Prostate cancer</topic><topic>R&amp;D</topic><topic>Radiation</topic><topic>Recall</topic><topic>Research &amp; development</topic><topic>Retrieval</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Time lag</topic><topic>Tomography</topic><topic>Tumors</topic><topic>Uniqueness</topic><topic>Vector quantization</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pradeep Kumar, B. P.</creatorcontrib><creatorcontrib>Srinidhi, N. N.</creatorcontrib><creatorcontrib>Shiva Darshan, S. L.</creatorcontrib><creatorcontrib>Naresh, E.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>SN computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pradeep Kumar, B. P.</au><au>Srinidhi, N. N.</au><au>Shiva Darshan, S. L.</au><au>Naresh, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of Cost Efficient VBIR Technique Using ICA and IVCA</atitle><jtitle>SN computer science</jtitle><stitle>SN COMPUT. SCI</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>5</volume><issue>5</issue><spage>560</spage><pages>560-</pages><artnum>560</artnum><issn>2661-8907</issn><issn>2662-995X</issn><eissn>2661-8907</eissn><abstract>With an emphasis on early-stage contrast agent transit through tumour vasculature, this study presents Adaptive Complex Independent Components Analysis (ACICA) as a unique method for evaluating intravascular responsiveness in prostatic tissue. Furthermore, a new SVM clustering method is introduced that outperforms the conventional k-means clustering for image retrieval based on vision. The study emphasises how dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) may be improved in conjunction with quantitative analysis. Within the field of DCE-MRI, ACICA stands out as a unique intravascular attention measurer. Utilising the spatial independence of extravascular and intravascular magnetic resonance imaging (MR) data, ACICA offers a strong foundation for DCE-MRI image analysis. It incorporates pharmacokinetic modelling to optimise the time lag, especially useful for arterial curves, and a reference region (RR)-based technique to adjust the intravascular concentration curve. The model's evaluation yields outstanding results, with recall and accuracy ranging from 83 to 99% and 82.8% to 99.6%, respectively. The average recall and precision across datasets are 92.86% and 92.82%).All things considered, this study demonstrates the effectiveness of ACICA in evaluating intravascular responsiveness and presents viable paths for enhancing clinical results and diagnostic precision in the treatment of prostate cancer.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s42979-024-02936-9</doi><orcidid>https://orcid.org/0000-0002-8368-836X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2661-8907
ispartof SN computer science, 2024-06, Vol.5 (5), p.560, Article 560
issn 2661-8907
2662-995X
2661-8907
language eng
recordid cdi_proquest_journals_3056070493
source Springer Nature - Complete Springer Journals
subjects AI Based Internet of Healthcare: Analysis and Future Perspectives
Blood vessels
Cancer therapies
Cluster analysis
Clustering
Computer Imaging
Computer Science
Computer Systems Organization and Communication Networks
Contrast agents
Data Structures and Information Theory
Disease
Image analysis
Image contrast
Image databases
Image enhancement
Image retrieval
Independent component analysis
Information retrieval
Information seeking behavior
Information Systems and Communication Service
Magnetic resonance imaging
Measurement techniques
Medical diagnosis
Medical imaging
Original Research
Patients
Pattern Recognition and Graphics
Permeability
Pharmacokinetics
Prostate cancer
R&D
Radiation
Recall
Research & development
Retrieval
Software Engineering/Programming and Operating Systems
Time lag
Tomography
Tumors
Uniqueness
Vector quantization
Vision
title Design of Cost Efficient VBIR Technique Using ICA and IVCA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A52%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20Cost%20Efficient%20VBIR%20Technique%20Using%20ICA%20and%20IVCA&rft.jtitle=SN%20computer%20science&rft.au=Pradeep%20Kumar,%20B.%20P.&rft.date=2024-06-01&rft.volume=5&rft.issue=5&rft.spage=560&rft.pages=560-&rft.artnum=560&rft.issn=2661-8907&rft.eissn=2661-8907&rft_id=info:doi/10.1007/s42979-024-02936-9&rft_dat=%3Cproquest_cross%3E3056070493%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3056070493&rft_id=info:pmid/&rfr_iscdi=true