Phosphorus Environmental Risk Assessment in Wetland Soil
At the interface between agricultural fields and water bodies there are wetlands constituted by hydromorphic soils. Our hypothesis is that hydromorphic soil acts a P sink and the P buffer capacity increases over time. To test our hypothesis, we apply tools to evaluate the P environmental risk via i)...
Gespeichert in:
Veröffentlicht in: | Wetlands (Wilmington, N.C.) N.C.), 2024-06, Vol.44 (5), p.58-58, Article 58 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 58 |
---|---|
container_issue | 5 |
container_start_page | 58 |
container_title | Wetlands (Wilmington, N.C.) |
container_volume | 44 |
creator | Mikosik, Ana Paula Marés Favaretto, Nerilde Motta, Antonio Carlos Vargas Melo, Vander de Freitas Vezzani, Fabiane Machado de Oliveira Júnior, Jairo Calderari Cherobim, Verediana Fernanda |
description | At the interface between agricultural fields and water bodies there are wetlands constituted by hydromorphic soils. Our hypothesis is that hydromorphic soil acts a P sink and the P buffer capacity increases over time. To test our hypothesis, we apply tools to evaluate the P environmental risk via i) maximum phosphorus adsorption capacity (PMAC); ii) environmental soil phosphorus thresholds (P-threshold); iii) soil phosphorus storage capacity (SPSC) in hydromorphic soil (Histosol) and a non-hydromorphic soil (Cambisol) under application of mineral P. The PMAC was estimated by the Langmuir model in soil samples collected at four depths (0–10, 10–20, 20–40 and 40–60 cm). Soil samples were incubated for 30, 60 and 120 days with mineral P equivalent to 0, 25, 50, 75 and 100% of the PMAC. The P-threshold was determined from the degree of phosphorus saturation (DPS), estimated using PMAC and Fe + Al extracted with Mehlich-1. The SPSC was obtained from the 0–60 cm depth using the DPS%
M1(CMAP)
. The PMAC values ranged from 2321 to 3539 mg kg
−1
with higher values in the Histosol compared to the Cambisol. The Histosol presented a P-threshold of 19% DPS (609 mg kg
−1
), while in the Cambisol it was 24% DPS (582 mg kg
−1
of P Mehlich-1). According to the SPSC tool, the soil acted as a source of P when P Mehlich-1 exceeded 887 mg kg
−1
in Histosol, while in Cambisol it was 773 mg kg
−1
. Overall, the P buffering capacity was higher in the Histosol, indicating the importance of preserving wetlands for water quality.
Graphical Abstract |
doi_str_mv | 10.1007/s13157-024-01812-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3056067713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153735510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-c438a2ae35ac380373d63d6c957ae1ebf742d643dae05aa03af3538d47e08b6c3</originalsourceid><addsrcrecordid>eNp9kM1Lw0AQxRdRsFb_AU8BL15WZ3eyu8mxlPoBBcUPPC7bZGNT06TuNIL_vVsjCB6EgYHh9x5vHmOnAi4EgLkkgUIZDjLlIDIheb7HRiJPkWuZ6n02AmkMV1LIQ3ZEtAIQWkoxYtn9sqPNsgs9JbP2ow5du_bt1jXJQ01vyYTIE-0uSd0mL37buLZMHru6OWYHlWvIn_zsMXu-mj1Nb_j87vp2OpnzApXc8iLFzEnnUbkCM0CDpY5T5Mo4L_yiMqksdYql86CcA3QVKszK1HjIFrrAMTsffDehe-89be26psI3MYjverLx72iqlICInv1BV10f2pjOIigN2hiBkZIDVYSOKPjKbkK9duHTCrC7Mu1Qpo1l2u8ybR5FOIgowu2rD7_W_6i-AIAIdiA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3056067713</pqid></control><display><type>article</type><title>Phosphorus Environmental Risk Assessment in Wetland Soil</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mikosik, Ana Paula Marés ; Favaretto, Nerilde ; Motta, Antonio Carlos Vargas ; Melo, Vander de Freitas ; Vezzani, Fabiane Machado ; de Oliveira Júnior, Jairo Calderari ; Cherobim, Verediana Fernanda</creator><creatorcontrib>Mikosik, Ana Paula Marés ; Favaretto, Nerilde ; Motta, Antonio Carlos Vargas ; Melo, Vander de Freitas ; Vezzani, Fabiane Machado ; de Oliveira Júnior, Jairo Calderari ; Cherobim, Verediana Fernanda</creatorcontrib><description>At the interface between agricultural fields and water bodies there are wetlands constituted by hydromorphic soils. Our hypothesis is that hydromorphic soil acts a P sink and the P buffer capacity increases over time. To test our hypothesis, we apply tools to evaluate the P environmental risk via i) maximum phosphorus adsorption capacity (PMAC); ii) environmental soil phosphorus thresholds (P-threshold); iii) soil phosphorus storage capacity (SPSC) in hydromorphic soil (Histosol) and a non-hydromorphic soil (Cambisol) under application of mineral P. The PMAC was estimated by the Langmuir model in soil samples collected at four depths (0–10, 10–20, 20–40 and 40–60 cm). Soil samples were incubated for 30, 60 and 120 days with mineral P equivalent to 0, 25, 50, 75 and 100% of the PMAC. The P-threshold was determined from the degree of phosphorus saturation (DPS), estimated using PMAC and Fe + Al extracted with Mehlich-1. The SPSC was obtained from the 0–60 cm depth using the DPS%
M1(CMAP)
. The PMAC values ranged from 2321 to 3539 mg kg
−1
with higher values in the Histosol compared to the Cambisol. The Histosol presented a P-threshold of 19% DPS (609 mg kg
−1
), while in the Cambisol it was 24% DPS (582 mg kg
−1
of P Mehlich-1). According to the SPSC tool, the soil acted as a source of P when P Mehlich-1 exceeded 887 mg kg
−1
in Histosol, while in Cambisol it was 773 mg kg
−1
. Overall, the P buffering capacity was higher in the Histosol, indicating the importance of preserving wetlands for water quality.
Graphical Abstract</description><identifier>ISSN: 0277-5212</identifier><identifier>EISSN: 1943-6246</identifier><identifier>DOI: 10.1007/s13157-024-01812-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Adsorption ; Agricultural land ; Agricultural production ; Biomedical and Life Sciences ; buffering capacity ; Buffers ; Cambisols ; Coastal Sciences ; Ecology ; Environmental assessment ; Environmental Management ; Environmental risk ; Freshwater & Marine Ecology ; Histosols ; Hydrogeology ; Hydrology ; hydromorphic soils ; Hypotheses ; Iron ; Landscape Ecology ; Life Sciences ; Ligands ; Minerals ; Original Research Article ; Particle size ; Phosphorus ; risk ; Risk assessment ; Soils ; sorption isotherms ; Storage capacity ; Water quality ; wetland soils ; Wetlands</subject><ispartof>Wetlands (Wilmington, N.C.), 2024-06, Vol.44 (5), p.58-58, Article 58</ispartof><rights>The Author(s), under exclusive licence to Society of Wetland Scientists 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-c438a2ae35ac380373d63d6c957ae1ebf742d643dae05aa03af3538d47e08b6c3</citedby><cites>FETCH-LOGICAL-c352t-c438a2ae35ac380373d63d6c957ae1ebf742d643dae05aa03af3538d47e08b6c3</cites><orcidid>0000-0002-5486-8185</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13157-024-01812-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13157-024-01812-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Mikosik, Ana Paula Marés</creatorcontrib><creatorcontrib>Favaretto, Nerilde</creatorcontrib><creatorcontrib>Motta, Antonio Carlos Vargas</creatorcontrib><creatorcontrib>Melo, Vander de Freitas</creatorcontrib><creatorcontrib>Vezzani, Fabiane Machado</creatorcontrib><creatorcontrib>de Oliveira Júnior, Jairo Calderari</creatorcontrib><creatorcontrib>Cherobim, Verediana Fernanda</creatorcontrib><title>Phosphorus Environmental Risk Assessment in Wetland Soil</title><title>Wetlands (Wilmington, N.C.)</title><addtitle>Wetlands</addtitle><description>At the interface between agricultural fields and water bodies there are wetlands constituted by hydromorphic soils. Our hypothesis is that hydromorphic soil acts a P sink and the P buffer capacity increases over time. To test our hypothesis, we apply tools to evaluate the P environmental risk via i) maximum phosphorus adsorption capacity (PMAC); ii) environmental soil phosphorus thresholds (P-threshold); iii) soil phosphorus storage capacity (SPSC) in hydromorphic soil (Histosol) and a non-hydromorphic soil (Cambisol) under application of mineral P. The PMAC was estimated by the Langmuir model in soil samples collected at four depths (0–10, 10–20, 20–40 and 40–60 cm). Soil samples were incubated for 30, 60 and 120 days with mineral P equivalent to 0, 25, 50, 75 and 100% of the PMAC. The P-threshold was determined from the degree of phosphorus saturation (DPS), estimated using PMAC and Fe + Al extracted with Mehlich-1. The SPSC was obtained from the 0–60 cm depth using the DPS%
M1(CMAP)
. The PMAC values ranged from 2321 to 3539 mg kg
−1
with higher values in the Histosol compared to the Cambisol. The Histosol presented a P-threshold of 19% DPS (609 mg kg
−1
), while in the Cambisol it was 24% DPS (582 mg kg
−1
of P Mehlich-1). According to the SPSC tool, the soil acted as a source of P when P Mehlich-1 exceeded 887 mg kg
−1
in Histosol, while in Cambisol it was 773 mg kg
−1
. Overall, the P buffering capacity was higher in the Histosol, indicating the importance of preserving wetlands for water quality.
Graphical Abstract</description><subject>Adsorption</subject><subject>Agricultural land</subject><subject>Agricultural production</subject><subject>Biomedical and Life Sciences</subject><subject>buffering capacity</subject><subject>Buffers</subject><subject>Cambisols</subject><subject>Coastal Sciences</subject><subject>Ecology</subject><subject>Environmental assessment</subject><subject>Environmental Management</subject><subject>Environmental risk</subject><subject>Freshwater & Marine Ecology</subject><subject>Histosols</subject><subject>Hydrogeology</subject><subject>Hydrology</subject><subject>hydromorphic soils</subject><subject>Hypotheses</subject><subject>Iron</subject><subject>Landscape Ecology</subject><subject>Life Sciences</subject><subject>Ligands</subject><subject>Minerals</subject><subject>Original Research Article</subject><subject>Particle size</subject><subject>Phosphorus</subject><subject>risk</subject><subject>Risk assessment</subject><subject>Soils</subject><subject>sorption isotherms</subject><subject>Storage capacity</subject><subject>Water quality</subject><subject>wetland soils</subject><subject>Wetlands</subject><issn>0277-5212</issn><issn>1943-6246</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Lw0AQxRdRsFb_AU8BL15WZ3eyu8mxlPoBBcUPPC7bZGNT06TuNIL_vVsjCB6EgYHh9x5vHmOnAi4EgLkkgUIZDjLlIDIheb7HRiJPkWuZ6n02AmkMV1LIQ3ZEtAIQWkoxYtn9sqPNsgs9JbP2ow5du_bt1jXJQ01vyYTIE-0uSd0mL37buLZMHru6OWYHlWvIn_zsMXu-mj1Nb_j87vp2OpnzApXc8iLFzEnnUbkCM0CDpY5T5Mo4L_yiMqksdYql86CcA3QVKszK1HjIFrrAMTsffDehe-89be26psI3MYjverLx72iqlICInv1BV10f2pjOIigN2hiBkZIDVYSOKPjKbkK9duHTCrC7Mu1Qpo1l2u8ybR5FOIgowu2rD7_W_6i-AIAIdiA</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Mikosik, Ana Paula Marés</creator><creator>Favaretto, Nerilde</creator><creator>Motta, Antonio Carlos Vargas</creator><creator>Melo, Vander de Freitas</creator><creator>Vezzani, Fabiane Machado</creator><creator>de Oliveira Júnior, Jairo Calderari</creator><creator>Cherobim, Verediana Fernanda</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-5486-8185</orcidid></search><sort><creationdate>20240601</creationdate><title>Phosphorus Environmental Risk Assessment in Wetland Soil</title><author>Mikosik, Ana Paula Marés ; Favaretto, Nerilde ; Motta, Antonio Carlos Vargas ; Melo, Vander de Freitas ; Vezzani, Fabiane Machado ; de Oliveira Júnior, Jairo Calderari ; Cherobim, Verediana Fernanda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-c438a2ae35ac380373d63d6c957ae1ebf742d643dae05aa03af3538d47e08b6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adsorption</topic><topic>Agricultural land</topic><topic>Agricultural production</topic><topic>Biomedical and Life Sciences</topic><topic>buffering capacity</topic><topic>Buffers</topic><topic>Cambisols</topic><topic>Coastal Sciences</topic><topic>Ecology</topic><topic>Environmental assessment</topic><topic>Environmental Management</topic><topic>Environmental risk</topic><topic>Freshwater & Marine Ecology</topic><topic>Histosols</topic><topic>Hydrogeology</topic><topic>Hydrology</topic><topic>hydromorphic soils</topic><topic>Hypotheses</topic><topic>Iron</topic><topic>Landscape Ecology</topic><topic>Life Sciences</topic><topic>Ligands</topic><topic>Minerals</topic><topic>Original Research Article</topic><topic>Particle size</topic><topic>Phosphorus</topic><topic>risk</topic><topic>Risk assessment</topic><topic>Soils</topic><topic>sorption isotherms</topic><topic>Storage capacity</topic><topic>Water quality</topic><topic>wetland soils</topic><topic>Wetlands</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mikosik, Ana Paula Marés</creatorcontrib><creatorcontrib>Favaretto, Nerilde</creatorcontrib><creatorcontrib>Motta, Antonio Carlos Vargas</creatorcontrib><creatorcontrib>Melo, Vander de Freitas</creatorcontrib><creatorcontrib>Vezzani, Fabiane Machado</creatorcontrib><creatorcontrib>de Oliveira Júnior, Jairo Calderari</creatorcontrib><creatorcontrib>Cherobim, Verediana Fernanda</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Wetlands (Wilmington, N.C.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mikosik, Ana Paula Marés</au><au>Favaretto, Nerilde</au><au>Motta, Antonio Carlos Vargas</au><au>Melo, Vander de Freitas</au><au>Vezzani, Fabiane Machado</au><au>de Oliveira Júnior, Jairo Calderari</au><au>Cherobim, Verediana Fernanda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phosphorus Environmental Risk Assessment in Wetland Soil</atitle><jtitle>Wetlands (Wilmington, N.C.)</jtitle><stitle>Wetlands</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>44</volume><issue>5</issue><spage>58</spage><epage>58</epage><pages>58-58</pages><artnum>58</artnum><issn>0277-5212</issn><eissn>1943-6246</eissn><abstract>At the interface between agricultural fields and water bodies there are wetlands constituted by hydromorphic soils. Our hypothesis is that hydromorphic soil acts a P sink and the P buffer capacity increases over time. To test our hypothesis, we apply tools to evaluate the P environmental risk via i) maximum phosphorus adsorption capacity (PMAC); ii) environmental soil phosphorus thresholds (P-threshold); iii) soil phosphorus storage capacity (SPSC) in hydromorphic soil (Histosol) and a non-hydromorphic soil (Cambisol) under application of mineral P. The PMAC was estimated by the Langmuir model in soil samples collected at four depths (0–10, 10–20, 20–40 and 40–60 cm). Soil samples were incubated for 30, 60 and 120 days with mineral P equivalent to 0, 25, 50, 75 and 100% of the PMAC. The P-threshold was determined from the degree of phosphorus saturation (DPS), estimated using PMAC and Fe + Al extracted with Mehlich-1. The SPSC was obtained from the 0–60 cm depth using the DPS%
M1(CMAP)
. The PMAC values ranged from 2321 to 3539 mg kg
−1
with higher values in the Histosol compared to the Cambisol. The Histosol presented a P-threshold of 19% DPS (609 mg kg
−1
), while in the Cambisol it was 24% DPS (582 mg kg
−1
of P Mehlich-1). According to the SPSC tool, the soil acted as a source of P when P Mehlich-1 exceeded 887 mg kg
−1
in Histosol, while in Cambisol it was 773 mg kg
−1
. Overall, the P buffering capacity was higher in the Histosol, indicating the importance of preserving wetlands for water quality.
Graphical Abstract</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s13157-024-01812-9</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5486-8185</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-5212 |
ispartof | Wetlands (Wilmington, N.C.), 2024-06, Vol.44 (5), p.58-58, Article 58 |
issn | 0277-5212 1943-6246 |
language | eng |
recordid | cdi_proquest_journals_3056067713 |
source | SpringerLink Journals - AutoHoldings |
subjects | Adsorption Agricultural land Agricultural production Biomedical and Life Sciences buffering capacity Buffers Cambisols Coastal Sciences Ecology Environmental assessment Environmental Management Environmental risk Freshwater & Marine Ecology Histosols Hydrogeology Hydrology hydromorphic soils Hypotheses Iron Landscape Ecology Life Sciences Ligands Minerals Original Research Article Particle size Phosphorus risk Risk assessment Soils sorption isotherms Storage capacity Water quality wetland soils Wetlands |
title | Phosphorus Environmental Risk Assessment in Wetland Soil |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T16%3A35%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phosphorus%20Environmental%20Risk%20Assessment%20in%20Wetland%20Soil&rft.jtitle=Wetlands%20(Wilmington,%20N.C.)&rft.au=Mikosik,%20Ana%20Paula%20Mar%C3%A9s&rft.date=2024-06-01&rft.volume=44&rft.issue=5&rft.spage=58&rft.epage=58&rft.pages=58-58&rft.artnum=58&rft.issn=0277-5212&rft.eissn=1943-6246&rft_id=info:doi/10.1007/s13157-024-01812-9&rft_dat=%3Cproquest_cross%3E3153735510%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3056067713&rft_id=info:pmid/&rfr_iscdi=true |