KPNDepth: Depth Estimation of Lane Images under Complex Rainy Environment

Recent advancements in deep neural networks have improved depth estimation in clear, daytime driving scenarios. However, existing methods struggle with rainy conditions due to rain streaks and fog, which distort depth estimation. This paper introduces a novel dual-layer convolutional kernel predicti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-10
1. Verfasser: Shi, Zhengxu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Shi, Zhengxu
description Recent advancements in deep neural networks have improved depth estimation in clear, daytime driving scenarios. However, existing methods struggle with rainy conditions due to rain streaks and fog, which distort depth estimation. This paper introduces a novel dual-layer convolutional kernel prediction network for lane depth estimation in rainy environments. It predicts two sets of kernels to mitigate depth loss and rain streak artifacts. To address the scarcity of real rainy lane data, an image synthesis algorithm, RCFLane, is presented, creating a synthetic dataset called RainKITTI. Experiments show the framework's effectiveness in complex rainy conditions.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3056045292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3056045292</sourcerecordid><originalsourceid>FETCH-proquest_journals_30560452923</originalsourceid><addsrcrecordid>eNqNyksKwjAUQNEgCBbtHh44LsSkqZ9prVgUEXFeAqaa0rzUJBXdvSIuwNEZ3DsgEeN8lixSxkYk9r6hlLJszoTgESl3x8NadeG2gi9Q-KCNDNoi2Br2EhWURl6Vhx4vykFuTdeqJ5ykxhcU-NDOolEYJmRYy9ar-OeYTDfFOd8mnbP3XvlQNbZ3-EkVpyKjqWBLxv-73gmdO5k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3056045292</pqid></control><display><type>article</type><title>KPNDepth: Depth Estimation of Lane Images under Complex Rainy Environment</title><source>Free E- Journals</source><creator>Shi, Zhengxu</creator><creatorcontrib>Shi, Zhengxu</creatorcontrib><description>Recent advancements in deep neural networks have improved depth estimation in clear, daytime driving scenarios. However, existing methods struggle with rainy conditions due to rain streaks and fog, which distort depth estimation. This paper introduces a novel dual-layer convolutional kernel prediction network for lane depth estimation in rainy environments. It predicts two sets of kernels to mitigate depth loss and rain streak artifacts. To address the scarcity of real rainy lane data, an image synthesis algorithm, RCFLane, is presented, creating a synthetic dataset called RainKITTI. Experiments show the framework's effectiveness in complex rainy conditions.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Artificial neural networks ; Datasets ; Image restoration ; Predictions ; Rainfall ; Synthetic data</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Shi, Zhengxu</creatorcontrib><title>KPNDepth: Depth Estimation of Lane Images under Complex Rainy Environment</title><title>arXiv.org</title><description>Recent advancements in deep neural networks have improved depth estimation in clear, daytime driving scenarios. However, existing methods struggle with rainy conditions due to rain streaks and fog, which distort depth estimation. This paper introduces a novel dual-layer convolutional kernel prediction network for lane depth estimation in rainy environments. It predicts two sets of kernels to mitigate depth loss and rain streak artifacts. To address the scarcity of real rainy lane data, an image synthesis algorithm, RCFLane, is presented, creating a synthetic dataset called RainKITTI. Experiments show the framework's effectiveness in complex rainy conditions.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Datasets</subject><subject>Image restoration</subject><subject>Predictions</subject><subject>Rainfall</subject><subject>Synthetic data</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyksKwjAUQNEgCBbtHh44LsSkqZ9prVgUEXFeAqaa0rzUJBXdvSIuwNEZ3DsgEeN8lixSxkYk9r6hlLJszoTgESl3x8NadeG2gi9Q-KCNDNoi2Br2EhWURl6Vhx4vykFuTdeqJ5ykxhcU-NDOolEYJmRYy9ar-OeYTDfFOd8mnbP3XvlQNbZ3-EkVpyKjqWBLxv-73gmdO5k</recordid><startdate>20241008</startdate><enddate>20241008</enddate><creator>Shi, Zhengxu</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241008</creationdate><title>KPNDepth: Depth Estimation of Lane Images under Complex Rainy Environment</title><author>Shi, Zhengxu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30560452923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Datasets</topic><topic>Image restoration</topic><topic>Predictions</topic><topic>Rainfall</topic><topic>Synthetic data</topic><toplevel>online_resources</toplevel><creatorcontrib>Shi, Zhengxu</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Zhengxu</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>KPNDepth: Depth Estimation of Lane Images under Complex Rainy Environment</atitle><jtitle>arXiv.org</jtitle><date>2024-10-08</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Recent advancements in deep neural networks have improved depth estimation in clear, daytime driving scenarios. However, existing methods struggle with rainy conditions due to rain streaks and fog, which distort depth estimation. This paper introduces a novel dual-layer convolutional kernel prediction network for lane depth estimation in rainy environments. It predicts two sets of kernels to mitigate depth loss and rain streak artifacts. To address the scarcity of real rainy lane data, an image synthesis algorithm, RCFLane, is presented, creating a synthetic dataset called RainKITTI. Experiments show the framework's effectiveness in complex rainy conditions.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_3056045292
source Free E- Journals
subjects Algorithms
Artificial neural networks
Datasets
Image restoration
Predictions
Rainfall
Synthetic data
title KPNDepth: Depth Estimation of Lane Images under Complex Rainy Environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A53%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=KPNDepth:%20Depth%20Estimation%20of%20Lane%20Images%20under%20Complex%20Rainy%20Environment&rft.jtitle=arXiv.org&rft.au=Shi,%20Zhengxu&rft.date=2024-10-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3056045292%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3056045292&rft_id=info:pmid/&rfr_iscdi=true