KPNDepth: Depth Estimation of Lane Images under Complex Rainy Environment
Recent advancements in deep neural networks have improved depth estimation in clear, daytime driving scenarios. However, existing methods struggle with rainy conditions due to rain streaks and fog, which distort depth estimation. This paper introduces a novel dual-layer convolutional kernel predicti...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-10 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Shi, Zhengxu |
description | Recent advancements in deep neural networks have improved depth estimation in clear, daytime driving scenarios. However, existing methods struggle with rainy conditions due to rain streaks and fog, which distort depth estimation. This paper introduces a novel dual-layer convolutional kernel prediction network for lane depth estimation in rainy environments. It predicts two sets of kernels to mitigate depth loss and rain streak artifacts. To address the scarcity of real rainy lane data, an image synthesis algorithm, RCFLane, is presented, creating a synthetic dataset called RainKITTI. Experiments show the framework's effectiveness in complex rainy conditions. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3056045292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3056045292</sourcerecordid><originalsourceid>FETCH-proquest_journals_30560452923</originalsourceid><addsrcrecordid>eNqNyksKwjAUQNEgCBbtHh44LsSkqZ9prVgUEXFeAqaa0rzUJBXdvSIuwNEZ3DsgEeN8lixSxkYk9r6hlLJszoTgESl3x8NadeG2gi9Q-KCNDNoi2Br2EhWURl6Vhx4vykFuTdeqJ5ykxhcU-NDOolEYJmRYy9ar-OeYTDfFOd8mnbP3XvlQNbZ3-EkVpyKjqWBLxv-73gmdO5k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3056045292</pqid></control><display><type>article</type><title>KPNDepth: Depth Estimation of Lane Images under Complex Rainy Environment</title><source>Free E- Journals</source><creator>Shi, Zhengxu</creator><creatorcontrib>Shi, Zhengxu</creatorcontrib><description>Recent advancements in deep neural networks have improved depth estimation in clear, daytime driving scenarios. However, existing methods struggle with rainy conditions due to rain streaks and fog, which distort depth estimation. This paper introduces a novel dual-layer convolutional kernel prediction network for lane depth estimation in rainy environments. It predicts two sets of kernels to mitigate depth loss and rain streak artifacts. To address the scarcity of real rainy lane data, an image synthesis algorithm, RCFLane, is presented, creating a synthetic dataset called RainKITTI. Experiments show the framework's effectiveness in complex rainy conditions.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Artificial neural networks ; Datasets ; Image restoration ; Predictions ; Rainfall ; Synthetic data</subject><ispartof>arXiv.org, 2024-10</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Shi, Zhengxu</creatorcontrib><title>KPNDepth: Depth Estimation of Lane Images under Complex Rainy Environment</title><title>arXiv.org</title><description>Recent advancements in deep neural networks have improved depth estimation in clear, daytime driving scenarios. However, existing methods struggle with rainy conditions due to rain streaks and fog, which distort depth estimation. This paper introduces a novel dual-layer convolutional kernel prediction network for lane depth estimation in rainy environments. It predicts two sets of kernels to mitigate depth loss and rain streak artifacts. To address the scarcity of real rainy lane data, an image synthesis algorithm, RCFLane, is presented, creating a synthetic dataset called RainKITTI. Experiments show the framework's effectiveness in complex rainy conditions.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Datasets</subject><subject>Image restoration</subject><subject>Predictions</subject><subject>Rainfall</subject><subject>Synthetic data</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyksKwjAUQNEgCBbtHh44LsSkqZ9prVgUEXFeAqaa0rzUJBXdvSIuwNEZ3DsgEeN8lixSxkYk9r6hlLJszoTgESl3x8NadeG2gi9Q-KCNDNoi2Br2EhWURl6Vhx4vykFuTdeqJ5ykxhcU-NDOolEYJmRYy9ar-OeYTDfFOd8mnbP3XvlQNbZ3-EkVpyKjqWBLxv-73gmdO5k</recordid><startdate>20241008</startdate><enddate>20241008</enddate><creator>Shi, Zhengxu</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241008</creationdate><title>KPNDepth: Depth Estimation of Lane Images under Complex Rainy Environment</title><author>Shi, Zhengxu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30560452923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Datasets</topic><topic>Image restoration</topic><topic>Predictions</topic><topic>Rainfall</topic><topic>Synthetic data</topic><toplevel>online_resources</toplevel><creatorcontrib>Shi, Zhengxu</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Zhengxu</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>KPNDepth: Depth Estimation of Lane Images under Complex Rainy Environment</atitle><jtitle>arXiv.org</jtitle><date>2024-10-08</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Recent advancements in deep neural networks have improved depth estimation in clear, daytime driving scenarios. However, existing methods struggle with rainy conditions due to rain streaks and fog, which distort depth estimation. This paper introduces a novel dual-layer convolutional kernel prediction network for lane depth estimation in rainy environments. It predicts two sets of kernels to mitigate depth loss and rain streak artifacts. To address the scarcity of real rainy lane data, an image synthesis algorithm, RCFLane, is presented, creating a synthetic dataset called RainKITTI. Experiments show the framework's effectiveness in complex rainy conditions.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3056045292 |
source | Free E- Journals |
subjects | Algorithms Artificial neural networks Datasets Image restoration Predictions Rainfall Synthetic data |
title | KPNDepth: Depth Estimation of Lane Images under Complex Rainy Environment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A53%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=KPNDepth:%20Depth%20Estimation%20of%20Lane%20Images%20under%20Complex%20Rainy%20Environment&rft.jtitle=arXiv.org&rft.au=Shi,%20Zhengxu&rft.date=2024-10-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3056045292%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3056045292&rft_id=info:pmid/&rfr_iscdi=true |