An extension to decision tree machine learning model for prediction of the higher heating value of biomass using augmented correlations

This preliminary research article presents an alternative formulation of machine learning (ML) models for the prediction of the higher heating value (HHV) of biomass. The proposed method aims to improve the accuracy of the decision tree model (DT) while preserving its computational performance. It u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP conference proceedings 2024-05, Vol.3086 (1)
Hauptverfasser: Makarkard, Pran, Leckpool, Sitthikrit, Srilek, Nongnoot
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title AIP conference proceedings
container_volume 3086
creator Makarkard, Pran
Leckpool, Sitthikrit
Srilek, Nongnoot
description This preliminary research article presents an alternative formulation of machine learning (ML) models for the prediction of the higher heating value (HHV) of biomass. The proposed method aims to improve the accuracy of the decision tree model (DT) while preserving its computational performance. It used 21 HHV prediction correlations augmented with the ML model formulation process rather than the sole use of raw experimental data as in a conventional approach. The method was also tested and compared with other two ML models, including support vector machine (SVM) and artificial neural network (ANN), with 148 experimental data sets. The test results showed that integration of the proposed method with DT had 2.72 times higher accuracy than the conventional model based on the R2 criterion with comparative computational performance.
doi_str_mv 10.1063/5.0204828
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3056021213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3056021213</sourcerecordid><originalsourceid>FETCH-LOGICAL-p988-4851b5499c923ad17a3c63af5e87f8c12ee4297aa769b0ca06bd1ae4196dfe173</originalsourceid><addsrcrecordid>eNotkMtOwzAQRS0EEqWw4A8ssUMK-BE7zrKqeEmV2HTBLnKcSeMqsYPtIPgCfpuGdjWjmaM7dy5Ct5Q8UCL5o3ggjOSKqTO0oELQrJBUnqMFIWWesZx_XKKrGPeEsLIo1AL9rhyG7wQuWu9w8rgBY499AMCDNp11gHvQwVm3w4NvoMetD3gM0FiTZtS3OHWAO7vrIOAOdJrRL91PMO9q6wcdI57iPNbTbgCXoMHGhwC9niXiNbpodR_h5lSXaPv8tF2_Zpv3l7f1apONpVJZrgStRV6WpmRcN7TQ3EiuWwGqaJWhDCA_PKZ1IcuaGE1k3VANOS1l0wIt-BLdHWXH4D8niKna-ym4w8WKEyEJo4zyA3V_pKKx6d9fNQY76PBTUVLNOVeiOuXM_wAxwHH0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3056021213</pqid></control><display><type>article</type><title>An extension to decision tree machine learning model for prediction of the higher heating value of biomass using augmented correlations</title><source>AIP Journals Complete</source><creator>Makarkard, Pran ; Leckpool, Sitthikrit ; Srilek, Nongnoot</creator><contributor>Charoen-amornkitt, Patcharawat ; Pienthong, Kulchate ; Wongsatanawarid, Atikorn ; Phaoharuhans, Danai ; Septham, Kamthon ; Kaewpradap, Amornrat</contributor><creatorcontrib>Makarkard, Pran ; Leckpool, Sitthikrit ; Srilek, Nongnoot ; Charoen-amornkitt, Patcharawat ; Pienthong, Kulchate ; Wongsatanawarid, Atikorn ; Phaoharuhans, Danai ; Septham, Kamthon ; Kaewpradap, Amornrat</creatorcontrib><description>This preliminary research article presents an alternative formulation of machine learning (ML) models for the prediction of the higher heating value (HHV) of biomass. The proposed method aims to improve the accuracy of the decision tree model (DT) while preserving its computational performance. It used 21 HHV prediction correlations augmented with the ML model formulation process rather than the sole use of raw experimental data as in a conventional approach. The method was also tested and compared with other two ML models, including support vector machine (SVM) and artificial neural network (ANN), with 148 experimental data sets. The test results showed that integration of the proposed method with DT had 2.72 times higher accuracy than the conventional model based on the R2 criterion with comparative computational performance.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0204828</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Accuracy ; Artificial neural networks ; Biomass ; Calorific value ; Decision trees ; Machine learning ; Support vector machines</subject><ispartof>AIP conference proceedings, 2024-05, Vol.3086 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0204828$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,778,782,787,788,792,4500,23917,23918,25127,27911,27912,76139</link.rule.ids></links><search><contributor>Charoen-amornkitt, Patcharawat</contributor><contributor>Pienthong, Kulchate</contributor><contributor>Wongsatanawarid, Atikorn</contributor><contributor>Phaoharuhans, Danai</contributor><contributor>Septham, Kamthon</contributor><contributor>Kaewpradap, Amornrat</contributor><creatorcontrib>Makarkard, Pran</creatorcontrib><creatorcontrib>Leckpool, Sitthikrit</creatorcontrib><creatorcontrib>Srilek, Nongnoot</creatorcontrib><title>An extension to decision tree machine learning model for prediction of the higher heating value of biomass using augmented correlations</title><title>AIP conference proceedings</title><description>This preliminary research article presents an alternative formulation of machine learning (ML) models for the prediction of the higher heating value (HHV) of biomass. The proposed method aims to improve the accuracy of the decision tree model (DT) while preserving its computational performance. It used 21 HHV prediction correlations augmented with the ML model formulation process rather than the sole use of raw experimental data as in a conventional approach. The method was also tested and compared with other two ML models, including support vector machine (SVM) and artificial neural network (ANN), with 148 experimental data sets. The test results showed that integration of the proposed method with DT had 2.72 times higher accuracy than the conventional model based on the R2 criterion with comparative computational performance.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Biomass</subject><subject>Calorific value</subject><subject>Decision trees</subject><subject>Machine learning</subject><subject>Support vector machines</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkMtOwzAQRS0EEqWw4A8ssUMK-BE7zrKqeEmV2HTBLnKcSeMqsYPtIPgCfpuGdjWjmaM7dy5Ct5Q8UCL5o3ggjOSKqTO0oELQrJBUnqMFIWWesZx_XKKrGPeEsLIo1AL9rhyG7wQuWu9w8rgBY499AMCDNp11gHvQwVm3w4NvoMetD3gM0FiTZtS3OHWAO7vrIOAOdJrRL91PMO9q6wcdI57iPNbTbgCXoMHGhwC9niXiNbpodR_h5lSXaPv8tF2_Zpv3l7f1apONpVJZrgStRV6WpmRcN7TQ3EiuWwGqaJWhDCA_PKZ1IcuaGE1k3VANOS1l0wIt-BLdHWXH4D8niKna-ym4w8WKEyEJo4zyA3V_pKKx6d9fNQY76PBTUVLNOVeiOuXM_wAxwHH0</recordid><startdate>20240517</startdate><enddate>20240517</enddate><creator>Makarkard, Pran</creator><creator>Leckpool, Sitthikrit</creator><creator>Srilek, Nongnoot</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240517</creationdate><title>An extension to decision tree machine learning model for prediction of the higher heating value of biomass using augmented correlations</title><author>Makarkard, Pran ; Leckpool, Sitthikrit ; Srilek, Nongnoot</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p988-4851b5499c923ad17a3c63af5e87f8c12ee4297aa769b0ca06bd1ae4196dfe173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Biomass</topic><topic>Calorific value</topic><topic>Decision trees</topic><topic>Machine learning</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Makarkard, Pran</creatorcontrib><creatorcontrib>Leckpool, Sitthikrit</creatorcontrib><creatorcontrib>Srilek, Nongnoot</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIP conference proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Makarkard, Pran</au><au>Leckpool, Sitthikrit</au><au>Srilek, Nongnoot</au><au>Charoen-amornkitt, Patcharawat</au><au>Pienthong, Kulchate</au><au>Wongsatanawarid, Atikorn</au><au>Phaoharuhans, Danai</au><au>Septham, Kamthon</au><au>Kaewpradap, Amornrat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An extension to decision tree machine learning model for prediction of the higher heating value of biomass using augmented correlations</atitle><jtitle>AIP conference proceedings</jtitle><date>2024-05-17</date><risdate>2024</risdate><volume>3086</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>This preliminary research article presents an alternative formulation of machine learning (ML) models for the prediction of the higher heating value (HHV) of biomass. The proposed method aims to improve the accuracy of the decision tree model (DT) while preserving its computational performance. It used 21 HHV prediction correlations augmented with the ML model formulation process rather than the sole use of raw experimental data as in a conventional approach. The method was also tested and compared with other two ML models, including support vector machine (SVM) and artificial neural network (ANN), with 148 experimental data sets. The test results showed that integration of the proposed method with DT had 2.72 times higher accuracy than the conventional model based on the R2 criterion with comparative computational performance.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0204828</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024-05, Vol.3086 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_3056021213
source AIP Journals Complete
subjects Accuracy
Artificial neural networks
Biomass
Calorific value
Decision trees
Machine learning
Support vector machines
title An extension to decision tree machine learning model for prediction of the higher heating value of biomass using augmented correlations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A20%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20extension%20to%20decision%20tree%20machine%20learning%20model%20for%20prediction%20of%20the%20higher%20heating%20value%20of%20biomass%20using%20augmented%20correlations&rft.jtitle=AIP%20conference%20proceedings&rft.au=Makarkard,%20Pran&rft.date=2024-05-17&rft.volume=3086&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0204828&rft_dat=%3Cproquest_scita%3E3056021213%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3056021213&rft_id=info:pmid/&rfr_iscdi=true