An extension to decision tree machine learning model for prediction of the higher heating value of biomass using augmented correlations
This preliminary research article presents an alternative formulation of machine learning (ML) models for the prediction of the higher heating value (HHV) of biomass. The proposed method aims to improve the accuracy of the decision tree model (DT) while preserving its computational performance. It u...
Gespeichert in:
Veröffentlicht in: | AIP conference proceedings 2024-05, Vol.3086 (1) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | AIP conference proceedings |
container_volume | 3086 |
creator | Makarkard, Pran Leckpool, Sitthikrit Srilek, Nongnoot |
description | This preliminary research article presents an alternative formulation of machine learning (ML) models for the prediction of the higher heating value (HHV) of biomass. The proposed method aims to improve the accuracy of the decision tree model (DT) while preserving its computational performance. It used 21 HHV prediction correlations augmented with the ML model formulation process rather than the sole use of raw experimental data as in a conventional approach. The method was also tested and compared with other two ML models, including support vector machine (SVM) and artificial neural network (ANN), with 148 experimental data sets. The test results showed that integration of the proposed method with DT had 2.72 times higher accuracy than the conventional model based on the R2 criterion with comparative computational performance. |
doi_str_mv | 10.1063/5.0204828 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_3056021213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3056021213</sourcerecordid><originalsourceid>FETCH-LOGICAL-p988-4851b5499c923ad17a3c63af5e87f8c12ee4297aa769b0ca06bd1ae4196dfe173</originalsourceid><addsrcrecordid>eNotkMtOwzAQRS0EEqWw4A8ssUMK-BE7zrKqeEmV2HTBLnKcSeMqsYPtIPgCfpuGdjWjmaM7dy5Ct5Q8UCL5o3ggjOSKqTO0oELQrJBUnqMFIWWesZx_XKKrGPeEsLIo1AL9rhyG7wQuWu9w8rgBY499AMCDNp11gHvQwVm3w4NvoMetD3gM0FiTZtS3OHWAO7vrIOAOdJrRL91PMO9q6wcdI57iPNbTbgCXoMHGhwC9niXiNbpodR_h5lSXaPv8tF2_Zpv3l7f1apONpVJZrgStRV6WpmRcN7TQ3EiuWwGqaJWhDCA_PKZ1IcuaGE1k3VANOS1l0wIt-BLdHWXH4D8niKna-ym4w8WKEyEJo4zyA3V_pKKx6d9fNQY76PBTUVLNOVeiOuXM_wAxwHH0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3056021213</pqid></control><display><type>article</type><title>An extension to decision tree machine learning model for prediction of the higher heating value of biomass using augmented correlations</title><source>AIP Journals Complete</source><creator>Makarkard, Pran ; Leckpool, Sitthikrit ; Srilek, Nongnoot</creator><contributor>Charoen-amornkitt, Patcharawat ; Pienthong, Kulchate ; Wongsatanawarid, Atikorn ; Phaoharuhans, Danai ; Septham, Kamthon ; Kaewpradap, Amornrat</contributor><creatorcontrib>Makarkard, Pran ; Leckpool, Sitthikrit ; Srilek, Nongnoot ; Charoen-amornkitt, Patcharawat ; Pienthong, Kulchate ; Wongsatanawarid, Atikorn ; Phaoharuhans, Danai ; Septham, Kamthon ; Kaewpradap, Amornrat</creatorcontrib><description>This preliminary research article presents an alternative formulation of machine learning (ML) models for the prediction of the higher heating value (HHV) of biomass. The proposed method aims to improve the accuracy of the decision tree model (DT) while preserving its computational performance. It used 21 HHV prediction correlations augmented with the ML model formulation process rather than the sole use of raw experimental data as in a conventional approach. The method was also tested and compared with other two ML models, including support vector machine (SVM) and artificial neural network (ANN), with 148 experimental data sets. The test results showed that integration of the proposed method with DT had 2.72 times higher accuracy than the conventional model based on the R2 criterion with comparative computational performance.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0204828</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Accuracy ; Artificial neural networks ; Biomass ; Calorific value ; Decision trees ; Machine learning ; Support vector machines</subject><ispartof>AIP conference proceedings, 2024-05, Vol.3086 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0204828$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,778,782,787,788,792,4500,23917,23918,25127,27911,27912,76139</link.rule.ids></links><search><contributor>Charoen-amornkitt, Patcharawat</contributor><contributor>Pienthong, Kulchate</contributor><contributor>Wongsatanawarid, Atikorn</contributor><contributor>Phaoharuhans, Danai</contributor><contributor>Septham, Kamthon</contributor><contributor>Kaewpradap, Amornrat</contributor><creatorcontrib>Makarkard, Pran</creatorcontrib><creatorcontrib>Leckpool, Sitthikrit</creatorcontrib><creatorcontrib>Srilek, Nongnoot</creatorcontrib><title>An extension to decision tree machine learning model for prediction of the higher heating value of biomass using augmented correlations</title><title>AIP conference proceedings</title><description>This preliminary research article presents an alternative formulation of machine learning (ML) models for the prediction of the higher heating value (HHV) of biomass. The proposed method aims to improve the accuracy of the decision tree model (DT) while preserving its computational performance. It used 21 HHV prediction correlations augmented with the ML model formulation process rather than the sole use of raw experimental data as in a conventional approach. The method was also tested and compared with other two ML models, including support vector machine (SVM) and artificial neural network (ANN), with 148 experimental data sets. The test results showed that integration of the proposed method with DT had 2.72 times higher accuracy than the conventional model based on the R2 criterion with comparative computational performance.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Biomass</subject><subject>Calorific value</subject><subject>Decision trees</subject><subject>Machine learning</subject><subject>Support vector machines</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkMtOwzAQRS0EEqWw4A8ssUMK-BE7zrKqeEmV2HTBLnKcSeMqsYPtIPgCfpuGdjWjmaM7dy5Ct5Q8UCL5o3ggjOSKqTO0oELQrJBUnqMFIWWesZx_XKKrGPeEsLIo1AL9rhyG7wQuWu9w8rgBY499AMCDNp11gHvQwVm3w4NvoMetD3gM0FiTZtS3OHWAO7vrIOAOdJrRL91PMO9q6wcdI57iPNbTbgCXoMHGhwC9niXiNbpodR_h5lSXaPv8tF2_Zpv3l7f1apONpVJZrgStRV6WpmRcN7TQ3EiuWwGqaJWhDCA_PKZ1IcuaGE1k3VANOS1l0wIt-BLdHWXH4D8niKna-ym4w8WKEyEJo4zyA3V_pKKx6d9fNQY76PBTUVLNOVeiOuXM_wAxwHH0</recordid><startdate>20240517</startdate><enddate>20240517</enddate><creator>Makarkard, Pran</creator><creator>Leckpool, Sitthikrit</creator><creator>Srilek, Nongnoot</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240517</creationdate><title>An extension to decision tree machine learning model for prediction of the higher heating value of biomass using augmented correlations</title><author>Makarkard, Pran ; Leckpool, Sitthikrit ; Srilek, Nongnoot</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p988-4851b5499c923ad17a3c63af5e87f8c12ee4297aa769b0ca06bd1ae4196dfe173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Biomass</topic><topic>Calorific value</topic><topic>Decision trees</topic><topic>Machine learning</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Makarkard, Pran</creatorcontrib><creatorcontrib>Leckpool, Sitthikrit</creatorcontrib><creatorcontrib>Srilek, Nongnoot</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIP conference proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Makarkard, Pran</au><au>Leckpool, Sitthikrit</au><au>Srilek, Nongnoot</au><au>Charoen-amornkitt, Patcharawat</au><au>Pienthong, Kulchate</au><au>Wongsatanawarid, Atikorn</au><au>Phaoharuhans, Danai</au><au>Septham, Kamthon</au><au>Kaewpradap, Amornrat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An extension to decision tree machine learning model for prediction of the higher heating value of biomass using augmented correlations</atitle><jtitle>AIP conference proceedings</jtitle><date>2024-05-17</date><risdate>2024</risdate><volume>3086</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>This preliminary research article presents an alternative formulation of machine learning (ML) models for the prediction of the higher heating value (HHV) of biomass. The proposed method aims to improve the accuracy of the decision tree model (DT) while preserving its computational performance. It used 21 HHV prediction correlations augmented with the ML model formulation process rather than the sole use of raw experimental data as in a conventional approach. The method was also tested and compared with other two ML models, including support vector machine (SVM) and artificial neural network (ANN), with 148 experimental data sets. The test results showed that integration of the proposed method with DT had 2.72 times higher accuracy than the conventional model based on the R2 criterion with comparative computational performance.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0204828</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2024-05, Vol.3086 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_3056021213 |
source | AIP Journals Complete |
subjects | Accuracy Artificial neural networks Biomass Calorific value Decision trees Machine learning Support vector machines |
title | An extension to decision tree machine learning model for prediction of the higher heating value of biomass using augmented correlations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A20%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20extension%20to%20decision%20tree%20machine%20learning%20model%20for%20prediction%20of%20the%20higher%20heating%20value%20of%20biomass%20using%20augmented%20correlations&rft.jtitle=AIP%20conference%20proceedings&rft.au=Makarkard,%20Pran&rft.date=2024-05-17&rft.volume=3086&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0204828&rft_dat=%3Cproquest_scita%3E3056021213%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3056021213&rft_id=info:pmid/&rfr_iscdi=true |