Distributed Measurement and Modified Navier-Stokes Model of Gas Pressure Profile Evolution in Hollow-Core Antiresonant Fibres

Recent progress in reducing the loss of hollow-core fibres (HCFs) makes them great candidates for many fibre applications. However, as the fibre's optical properties depend on the gas pressure and composition within the core and cladding holes, it is essential to understand the gas dynamics at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in quantum electronics 2024-11, Vol.30 (6: Advances and Applications of Hollow-Core Fibers), p.1-10
Hauptverfasser: Elistratova, Elizaveta, Kelly, Thomas W., Davidson, Ian A., Sakr, Hesham, Bradley, Thomas D., Taranta, Austin, Poletti, Francesco, Slavik, Radan, Horak, Peter, Wheeler, Natalie V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 6: Advances and Applications of Hollow-Core Fibers
container_start_page 1
container_title IEEE journal of selected topics in quantum electronics
container_volume 30
creator Elistratova, Elizaveta
Kelly, Thomas W.
Davidson, Ian A.
Sakr, Hesham
Bradley, Thomas D.
Taranta, Austin
Poletti, Francesco
Slavik, Radan
Horak, Peter
Wheeler, Natalie V.
description Recent progress in reducing the loss of hollow-core fibres (HCFs) makes them great candidates for many fibre applications. However, as the fibre's optical properties depend on the gas pressure and composition within the core and cladding holes, it is essential to understand the gas dynamics at play when the fibres are pressurised, vented or evacuated. Here, we investigate the gas flow dynamics along the core of an HCF with a more complex microstructure design, as is typical of recent state-of-the-art HCFs. We use a novel distributed technique based on optical time-domain reflectometry (OTDR). This technique enables measurement of the evolution of the pressure distribution within the hollow core during the gas-filling process over long fibre lengths. Using these results, we show that the pressure distribution inside the HCF can be simulated using simplified Navier-Stokes equations and approximating the fibre core as a simple cylindrical tube of \sim 0.7 times the fibre core diameter.
doi_str_mv 10.1109/JSTQE.2024.3397456
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3056007512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10521722</ieee_id><sourcerecordid>3056007512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-46991d8a90d46031c970b0cf0339bc0dd1d8298bf2931aab9338f52b8d12c2793</originalsourceid><addsrcrecordid>eNpNUMtOwzAQtBBIlMIPIA6WOKes7bx8rEofoPJSi8QtchJbckljsJ0iDvw7Du2B087uzsxqB6FLAiNCgN_cr9Yv0xEFGo8Y41mcpEdoQJIkj-IkpscBQ5ZFNIW3U3Tm3AYA8jiHAfq51c5bXXZe1vhBCtdZuZWtx6INvam10mHxKHZa2mjlzbt0_Vg22Cg8Fw4_W-l6UQBG6Ubi6c40ndemxbrFC9M05iuamEAYt14HsmlFsJ_pMuBzdKJE4-TFoQ7R62y6niyi5dP8bjJeRhXlxEdxyjmpc8GhjlNgpOIZlFApCL-WFdR1WFKel4pyRoQoOWO5SmiZ14RWNONsiK73vh_WfHbS-WJjOtuGkwWDJAXIEkIDi-5ZlTXOWamKD6u3wn4XBIo-5uIv5qKPuTjEHERXe5GWUv4TJJRklLJf9JN6bA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3056007512</pqid></control><display><type>article</type><title>Distributed Measurement and Modified Navier-Stokes Model of Gas Pressure Profile Evolution in Hollow-Core Antiresonant Fibres</title><source>IEEE Electronic Library (IEL)</source><creator>Elistratova, Elizaveta ; Kelly, Thomas W. ; Davidson, Ian A. ; Sakr, Hesham ; Bradley, Thomas D. ; Taranta, Austin ; Poletti, Francesco ; Slavik, Radan ; Horak, Peter ; Wheeler, Natalie V.</creator><creatorcontrib>Elistratova, Elizaveta ; Kelly, Thomas W. ; Davidson, Ian A. ; Sakr, Hesham ; Bradley, Thomas D. ; Taranta, Austin ; Poletti, Francesco ; Slavik, Radan ; Horak, Peter ; Wheeler, Natalie V.</creatorcontrib><description>Recent progress in reducing the loss of hollow-core fibres (HCFs) makes them great candidates for many fibre applications. However, as the fibre's optical properties depend on the gas pressure and composition within the core and cladding holes, it is essential to understand the gas dynamics at play when the fibres are pressurised, vented or evacuated. Here, we investigate the gas flow dynamics along the core of an HCF with a more complex microstructure design, as is typical of recent state-of-the-art HCFs. We use a novel distributed technique based on optical time-domain reflectometry (OTDR). This technique enables measurement of the evolution of the pressure distribution within the hollow core during the gas-filling process over long fibre lengths. Using these results, we show that the pressure distribution inside the HCF can be simulated using simplified Navier-Stokes equations and approximating the fibre core as a simple cylindrical tube of &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;\sim&lt;/tex-math&gt;&lt;/inline-formula&gt; 0.7 times the fibre core diameter.</description><identifier>ISSN: 1077-260X</identifier><identifier>EISSN: 1558-4542</identifier><identifier>DOI: 10.1109/JSTQE.2024.3397456</identifier><identifier>CODEN: IJSQEN</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Atmospheric modeling ; Electron tubes ; Evolution ; Filling ; Fluid flow ; Gas dynamics ; gas filling ; Gas flow ; Gas pressure ; GDRI ; Hollow waveguides ; Hollow-core fibres (HCFs) ; Long fibers ; Mathematical models ; Navier-Stokes equations ; Optical fibers ; Optical properties ; optical time-domain reflectometry ; Pressure distribution ; Pressure measurement ; pressure profile ; Reflectometry</subject><ispartof>IEEE journal of selected topics in quantum electronics, 2024-11, Vol.30 (6: Advances and Applications of Hollow-Core Fibers), p.1-10</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c291t-46991d8a90d46031c970b0cf0339bc0dd1d8298bf2931aab9338f52b8d12c2793</cites><orcidid>0000-0002-1265-9510 ; 0009-0009-1678-1706 ; 0000-0002-4154-8414 ; 0000-0002-5666-6800 ; 0000-0002-1258-4213 ; 0000-0001-6568-5811 ; 0000-0003-0007-4897 ; 0000-0002-8710-8764 ; 0000-0002-1000-3083 ; 0000-0002-9336-4262</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10521722$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10521722$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Elistratova, Elizaveta</creatorcontrib><creatorcontrib>Kelly, Thomas W.</creatorcontrib><creatorcontrib>Davidson, Ian A.</creatorcontrib><creatorcontrib>Sakr, Hesham</creatorcontrib><creatorcontrib>Bradley, Thomas D.</creatorcontrib><creatorcontrib>Taranta, Austin</creatorcontrib><creatorcontrib>Poletti, Francesco</creatorcontrib><creatorcontrib>Slavik, Radan</creatorcontrib><creatorcontrib>Horak, Peter</creatorcontrib><creatorcontrib>Wheeler, Natalie V.</creatorcontrib><title>Distributed Measurement and Modified Navier-Stokes Model of Gas Pressure Profile Evolution in Hollow-Core Antiresonant Fibres</title><title>IEEE journal of selected topics in quantum electronics</title><addtitle>JSTQE</addtitle><description>Recent progress in reducing the loss of hollow-core fibres (HCFs) makes them great candidates for many fibre applications. However, as the fibre's optical properties depend on the gas pressure and composition within the core and cladding holes, it is essential to understand the gas dynamics at play when the fibres are pressurised, vented or evacuated. Here, we investigate the gas flow dynamics along the core of an HCF with a more complex microstructure design, as is typical of recent state-of-the-art HCFs. We use a novel distributed technique based on optical time-domain reflectometry (OTDR). This technique enables measurement of the evolution of the pressure distribution within the hollow core during the gas-filling process over long fibre lengths. Using these results, we show that the pressure distribution inside the HCF can be simulated using simplified Navier-Stokes equations and approximating the fibre core as a simple cylindrical tube of &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;\sim&lt;/tex-math&gt;&lt;/inline-formula&gt; 0.7 times the fibre core diameter.</description><subject>Atmospheric modeling</subject><subject>Electron tubes</subject><subject>Evolution</subject><subject>Filling</subject><subject>Fluid flow</subject><subject>Gas dynamics</subject><subject>gas filling</subject><subject>Gas flow</subject><subject>Gas pressure</subject><subject>GDRI</subject><subject>Hollow waveguides</subject><subject>Hollow-core fibres (HCFs)</subject><subject>Long fibers</subject><subject>Mathematical models</subject><subject>Navier-Stokes equations</subject><subject>Optical fibers</subject><subject>Optical properties</subject><subject>optical time-domain reflectometry</subject><subject>Pressure distribution</subject><subject>Pressure measurement</subject><subject>pressure profile</subject><subject>Reflectometry</subject><issn>1077-260X</issn><issn>1558-4542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNUMtOwzAQtBBIlMIPIA6WOKes7bx8rEofoPJSi8QtchJbckljsJ0iDvw7Du2B087uzsxqB6FLAiNCgN_cr9Yv0xEFGo8Y41mcpEdoQJIkj-IkpscBQ5ZFNIW3U3Tm3AYA8jiHAfq51c5bXXZe1vhBCtdZuZWtx6INvam10mHxKHZa2mjlzbt0_Vg22Cg8Fw4_W-l6UQBG6Ubi6c40ndemxbrFC9M05iuamEAYt14HsmlFsJ_pMuBzdKJE4-TFoQ7R62y6niyi5dP8bjJeRhXlxEdxyjmpc8GhjlNgpOIZlFApCL-WFdR1WFKel4pyRoQoOWO5SmiZ14RWNONsiK73vh_WfHbS-WJjOtuGkwWDJAXIEkIDi-5ZlTXOWamKD6u3wn4XBIo-5uIv5qKPuTjEHERXe5GWUv4TJJRklLJf9JN6bA</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Elistratova, Elizaveta</creator><creator>Kelly, Thomas W.</creator><creator>Davidson, Ian A.</creator><creator>Sakr, Hesham</creator><creator>Bradley, Thomas D.</creator><creator>Taranta, Austin</creator><creator>Poletti, Francesco</creator><creator>Slavik, Radan</creator><creator>Horak, Peter</creator><creator>Wheeler, Natalie V.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1265-9510</orcidid><orcidid>https://orcid.org/0009-0009-1678-1706</orcidid><orcidid>https://orcid.org/0000-0002-4154-8414</orcidid><orcidid>https://orcid.org/0000-0002-5666-6800</orcidid><orcidid>https://orcid.org/0000-0002-1258-4213</orcidid><orcidid>https://orcid.org/0000-0001-6568-5811</orcidid><orcidid>https://orcid.org/0000-0003-0007-4897</orcidid><orcidid>https://orcid.org/0000-0002-8710-8764</orcidid><orcidid>https://orcid.org/0000-0002-1000-3083</orcidid><orcidid>https://orcid.org/0000-0002-9336-4262</orcidid></search><sort><creationdate>20241101</creationdate><title>Distributed Measurement and Modified Navier-Stokes Model of Gas Pressure Profile Evolution in Hollow-Core Antiresonant Fibres</title><author>Elistratova, Elizaveta ; Kelly, Thomas W. ; Davidson, Ian A. ; Sakr, Hesham ; Bradley, Thomas D. ; Taranta, Austin ; Poletti, Francesco ; Slavik, Radan ; Horak, Peter ; Wheeler, Natalie V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-46991d8a90d46031c970b0cf0339bc0dd1d8298bf2931aab9338f52b8d12c2793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atmospheric modeling</topic><topic>Electron tubes</topic><topic>Evolution</topic><topic>Filling</topic><topic>Fluid flow</topic><topic>Gas dynamics</topic><topic>gas filling</topic><topic>Gas flow</topic><topic>Gas pressure</topic><topic>GDRI</topic><topic>Hollow waveguides</topic><topic>Hollow-core fibres (HCFs)</topic><topic>Long fibers</topic><topic>Mathematical models</topic><topic>Navier-Stokes equations</topic><topic>Optical fibers</topic><topic>Optical properties</topic><topic>optical time-domain reflectometry</topic><topic>Pressure distribution</topic><topic>Pressure measurement</topic><topic>pressure profile</topic><topic>Reflectometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elistratova, Elizaveta</creatorcontrib><creatorcontrib>Kelly, Thomas W.</creatorcontrib><creatorcontrib>Davidson, Ian A.</creatorcontrib><creatorcontrib>Sakr, Hesham</creatorcontrib><creatorcontrib>Bradley, Thomas D.</creatorcontrib><creatorcontrib>Taranta, Austin</creatorcontrib><creatorcontrib>Poletti, Francesco</creatorcontrib><creatorcontrib>Slavik, Radan</creatorcontrib><creatorcontrib>Horak, Peter</creatorcontrib><creatorcontrib>Wheeler, Natalie V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of selected topics in quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Elistratova, Elizaveta</au><au>Kelly, Thomas W.</au><au>Davidson, Ian A.</au><au>Sakr, Hesham</au><au>Bradley, Thomas D.</au><au>Taranta, Austin</au><au>Poletti, Francesco</au><au>Slavik, Radan</au><au>Horak, Peter</au><au>Wheeler, Natalie V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Measurement and Modified Navier-Stokes Model of Gas Pressure Profile Evolution in Hollow-Core Antiresonant Fibres</atitle><jtitle>IEEE journal of selected topics in quantum electronics</jtitle><stitle>JSTQE</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>30</volume><issue>6: Advances and Applications of Hollow-Core Fibers</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1077-260X</issn><eissn>1558-4542</eissn><coden>IJSQEN</coden><abstract>Recent progress in reducing the loss of hollow-core fibres (HCFs) makes them great candidates for many fibre applications. However, as the fibre's optical properties depend on the gas pressure and composition within the core and cladding holes, it is essential to understand the gas dynamics at play when the fibres are pressurised, vented or evacuated. Here, we investigate the gas flow dynamics along the core of an HCF with a more complex microstructure design, as is typical of recent state-of-the-art HCFs. We use a novel distributed technique based on optical time-domain reflectometry (OTDR). This technique enables measurement of the evolution of the pressure distribution within the hollow core during the gas-filling process over long fibre lengths. Using these results, we show that the pressure distribution inside the HCF can be simulated using simplified Navier-Stokes equations and approximating the fibre core as a simple cylindrical tube of &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;\sim&lt;/tex-math&gt;&lt;/inline-formula&gt; 0.7 times the fibre core diameter.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTQE.2024.3397456</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1265-9510</orcidid><orcidid>https://orcid.org/0009-0009-1678-1706</orcidid><orcidid>https://orcid.org/0000-0002-4154-8414</orcidid><orcidid>https://orcid.org/0000-0002-5666-6800</orcidid><orcidid>https://orcid.org/0000-0002-1258-4213</orcidid><orcidid>https://orcid.org/0000-0001-6568-5811</orcidid><orcidid>https://orcid.org/0000-0003-0007-4897</orcidid><orcidid>https://orcid.org/0000-0002-8710-8764</orcidid><orcidid>https://orcid.org/0000-0002-1000-3083</orcidid><orcidid>https://orcid.org/0000-0002-9336-4262</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-260X
ispartof IEEE journal of selected topics in quantum electronics, 2024-11, Vol.30 (6: Advances and Applications of Hollow-Core Fibers), p.1-10
issn 1077-260X
1558-4542
language eng
recordid cdi_proquest_journals_3056007512
source IEEE Electronic Library (IEL)
subjects Atmospheric modeling
Electron tubes
Evolution
Filling
Fluid flow
Gas dynamics
gas filling
Gas flow
Gas pressure
GDRI
Hollow waveguides
Hollow-core fibres (HCFs)
Long fibers
Mathematical models
Navier-Stokes equations
Optical fibers
Optical properties
optical time-domain reflectometry
Pressure distribution
Pressure measurement
pressure profile
Reflectometry
title Distributed Measurement and Modified Navier-Stokes Model of Gas Pressure Profile Evolution in Hollow-Core Antiresonant Fibres
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T00%3A46%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Measurement%20and%20Modified%20Navier-Stokes%20Model%20of%20Gas%20Pressure%20Profile%20Evolution%20in%20Hollow-Core%20Antiresonant%20Fibres&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20quantum%20electronics&rft.au=Elistratova,%20Elizaveta&rft.date=2024-11-01&rft.volume=30&rft.issue=6:%20Advances%20and%20Applications%20of%20Hollow-Core%20Fibers&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1077-260X&rft.eissn=1558-4542&rft.coden=IJSQEN&rft_id=info:doi/10.1109/JSTQE.2024.3397456&rft_dat=%3Cproquest_RIE%3E3056007512%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3056007512&rft_id=info:pmid/&rft_ieee_id=10521722&rfr_iscdi=true