Distributed Measurement and Modified Navier-Stokes Model of Gas Pressure Profile Evolution in Hollow-Core Antiresonant Fibres
Recent progress in reducing the loss of hollow-core fibres (HCFs) makes them great candidates for many fibre applications. However, as the fibre's optical properties depend on the gas pressure and composition within the core and cladding holes, it is essential to understand the gas dynamics at...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in quantum electronics 2024-11, Vol.30 (6: Advances and Applications of Hollow-Core Fibers), p.1-10 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 6: Advances and Applications of Hollow-Core Fibers |
container_start_page | 1 |
container_title | IEEE journal of selected topics in quantum electronics |
container_volume | 30 |
creator | Elistratova, Elizaveta Kelly, Thomas W. Davidson, Ian A. Sakr, Hesham Bradley, Thomas D. Taranta, Austin Poletti, Francesco Slavik, Radan Horak, Peter Wheeler, Natalie V. |
description | Recent progress in reducing the loss of hollow-core fibres (HCFs) makes them great candidates for many fibre applications. However, as the fibre's optical properties depend on the gas pressure and composition within the core and cladding holes, it is essential to understand the gas dynamics at play when the fibres are pressurised, vented or evacuated. Here, we investigate the gas flow dynamics along the core of an HCF with a more complex microstructure design, as is typical of recent state-of-the-art HCFs. We use a novel distributed technique based on optical time-domain reflectometry (OTDR). This technique enables measurement of the evolution of the pressure distribution within the hollow core during the gas-filling process over long fibre lengths. Using these results, we show that the pressure distribution inside the HCF can be simulated using simplified Navier-Stokes equations and approximating the fibre core as a simple cylindrical tube of \sim 0.7 times the fibre core diameter. |
doi_str_mv | 10.1109/JSTQE.2024.3397456 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3056007512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10521722</ieee_id><sourcerecordid>3056007512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-46991d8a90d46031c970b0cf0339bc0dd1d8298bf2931aab9338f52b8d12c2793</originalsourceid><addsrcrecordid>eNpNUMtOwzAQtBBIlMIPIA6WOKes7bx8rEofoPJSi8QtchJbckljsJ0iDvw7Du2B087uzsxqB6FLAiNCgN_cr9Yv0xEFGo8Y41mcpEdoQJIkj-IkpscBQ5ZFNIW3U3Tm3AYA8jiHAfq51c5bXXZe1vhBCtdZuZWtx6INvam10mHxKHZa2mjlzbt0_Vg22Cg8Fw4_W-l6UQBG6Ubi6c40ndemxbrFC9M05iuamEAYt14HsmlFsJ_pMuBzdKJE4-TFoQ7R62y6niyi5dP8bjJeRhXlxEdxyjmpc8GhjlNgpOIZlFApCL-WFdR1WFKel4pyRoQoOWO5SmiZ14RWNONsiK73vh_WfHbS-WJjOtuGkwWDJAXIEkIDi-5ZlTXOWamKD6u3wn4XBIo-5uIv5qKPuTjEHERXe5GWUv4TJJRklLJf9JN6bA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3056007512</pqid></control><display><type>article</type><title>Distributed Measurement and Modified Navier-Stokes Model of Gas Pressure Profile Evolution in Hollow-Core Antiresonant Fibres</title><source>IEEE Electronic Library (IEL)</source><creator>Elistratova, Elizaveta ; Kelly, Thomas W. ; Davidson, Ian A. ; Sakr, Hesham ; Bradley, Thomas D. ; Taranta, Austin ; Poletti, Francesco ; Slavik, Radan ; Horak, Peter ; Wheeler, Natalie V.</creator><creatorcontrib>Elistratova, Elizaveta ; Kelly, Thomas W. ; Davidson, Ian A. ; Sakr, Hesham ; Bradley, Thomas D. ; Taranta, Austin ; Poletti, Francesco ; Slavik, Radan ; Horak, Peter ; Wheeler, Natalie V.</creatorcontrib><description>Recent progress in reducing the loss of hollow-core fibres (HCFs) makes them great candidates for many fibre applications. However, as the fibre's optical properties depend on the gas pressure and composition within the core and cladding holes, it is essential to understand the gas dynamics at play when the fibres are pressurised, vented or evacuated. Here, we investigate the gas flow dynamics along the core of an HCF with a more complex microstructure design, as is typical of recent state-of-the-art HCFs. We use a novel distributed technique based on optical time-domain reflectometry (OTDR). This technique enables measurement of the evolution of the pressure distribution within the hollow core during the gas-filling process over long fibre lengths. Using these results, we show that the pressure distribution inside the HCF can be simulated using simplified Navier-Stokes equations and approximating the fibre core as a simple cylindrical tube of <inline-formula><tex-math notation="LaTeX">\sim</tex-math></inline-formula> 0.7 times the fibre core diameter.</description><identifier>ISSN: 1077-260X</identifier><identifier>EISSN: 1558-4542</identifier><identifier>DOI: 10.1109/JSTQE.2024.3397456</identifier><identifier>CODEN: IJSQEN</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Atmospheric modeling ; Electron tubes ; Evolution ; Filling ; Fluid flow ; Gas dynamics ; gas filling ; Gas flow ; Gas pressure ; GDRI ; Hollow waveguides ; Hollow-core fibres (HCFs) ; Long fibers ; Mathematical models ; Navier-Stokes equations ; Optical fibers ; Optical properties ; optical time-domain reflectometry ; Pressure distribution ; Pressure measurement ; pressure profile ; Reflectometry</subject><ispartof>IEEE journal of selected topics in quantum electronics, 2024-11, Vol.30 (6: Advances and Applications of Hollow-Core Fibers), p.1-10</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c291t-46991d8a90d46031c970b0cf0339bc0dd1d8298bf2931aab9338f52b8d12c2793</cites><orcidid>0000-0002-1265-9510 ; 0009-0009-1678-1706 ; 0000-0002-4154-8414 ; 0000-0002-5666-6800 ; 0000-0002-1258-4213 ; 0000-0001-6568-5811 ; 0000-0003-0007-4897 ; 0000-0002-8710-8764 ; 0000-0002-1000-3083 ; 0000-0002-9336-4262</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10521722$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10521722$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Elistratova, Elizaveta</creatorcontrib><creatorcontrib>Kelly, Thomas W.</creatorcontrib><creatorcontrib>Davidson, Ian A.</creatorcontrib><creatorcontrib>Sakr, Hesham</creatorcontrib><creatorcontrib>Bradley, Thomas D.</creatorcontrib><creatorcontrib>Taranta, Austin</creatorcontrib><creatorcontrib>Poletti, Francesco</creatorcontrib><creatorcontrib>Slavik, Radan</creatorcontrib><creatorcontrib>Horak, Peter</creatorcontrib><creatorcontrib>Wheeler, Natalie V.</creatorcontrib><title>Distributed Measurement and Modified Navier-Stokes Model of Gas Pressure Profile Evolution in Hollow-Core Antiresonant Fibres</title><title>IEEE journal of selected topics in quantum electronics</title><addtitle>JSTQE</addtitle><description>Recent progress in reducing the loss of hollow-core fibres (HCFs) makes them great candidates for many fibre applications. However, as the fibre's optical properties depend on the gas pressure and composition within the core and cladding holes, it is essential to understand the gas dynamics at play when the fibres are pressurised, vented or evacuated. Here, we investigate the gas flow dynamics along the core of an HCF with a more complex microstructure design, as is typical of recent state-of-the-art HCFs. We use a novel distributed technique based on optical time-domain reflectometry (OTDR). This technique enables measurement of the evolution of the pressure distribution within the hollow core during the gas-filling process over long fibre lengths. Using these results, we show that the pressure distribution inside the HCF can be simulated using simplified Navier-Stokes equations and approximating the fibre core as a simple cylindrical tube of <inline-formula><tex-math notation="LaTeX">\sim</tex-math></inline-formula> 0.7 times the fibre core diameter.</description><subject>Atmospheric modeling</subject><subject>Electron tubes</subject><subject>Evolution</subject><subject>Filling</subject><subject>Fluid flow</subject><subject>Gas dynamics</subject><subject>gas filling</subject><subject>Gas flow</subject><subject>Gas pressure</subject><subject>GDRI</subject><subject>Hollow waveguides</subject><subject>Hollow-core fibres (HCFs)</subject><subject>Long fibers</subject><subject>Mathematical models</subject><subject>Navier-Stokes equations</subject><subject>Optical fibers</subject><subject>Optical properties</subject><subject>optical time-domain reflectometry</subject><subject>Pressure distribution</subject><subject>Pressure measurement</subject><subject>pressure profile</subject><subject>Reflectometry</subject><issn>1077-260X</issn><issn>1558-4542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNUMtOwzAQtBBIlMIPIA6WOKes7bx8rEofoPJSi8QtchJbckljsJ0iDvw7Du2B087uzsxqB6FLAiNCgN_cr9Yv0xEFGo8Y41mcpEdoQJIkj-IkpscBQ5ZFNIW3U3Tm3AYA8jiHAfq51c5bXXZe1vhBCtdZuZWtx6INvam10mHxKHZa2mjlzbt0_Vg22Cg8Fw4_W-l6UQBG6Ubi6c40ndemxbrFC9M05iuamEAYt14HsmlFsJ_pMuBzdKJE4-TFoQ7R62y6niyi5dP8bjJeRhXlxEdxyjmpc8GhjlNgpOIZlFApCL-WFdR1WFKel4pyRoQoOWO5SmiZ14RWNONsiK73vh_WfHbS-WJjOtuGkwWDJAXIEkIDi-5ZlTXOWamKD6u3wn4XBIo-5uIv5qKPuTjEHERXe5GWUv4TJJRklLJf9JN6bA</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Elistratova, Elizaveta</creator><creator>Kelly, Thomas W.</creator><creator>Davidson, Ian A.</creator><creator>Sakr, Hesham</creator><creator>Bradley, Thomas D.</creator><creator>Taranta, Austin</creator><creator>Poletti, Francesco</creator><creator>Slavik, Radan</creator><creator>Horak, Peter</creator><creator>Wheeler, Natalie V.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1265-9510</orcidid><orcidid>https://orcid.org/0009-0009-1678-1706</orcidid><orcidid>https://orcid.org/0000-0002-4154-8414</orcidid><orcidid>https://orcid.org/0000-0002-5666-6800</orcidid><orcidid>https://orcid.org/0000-0002-1258-4213</orcidid><orcidid>https://orcid.org/0000-0001-6568-5811</orcidid><orcidid>https://orcid.org/0000-0003-0007-4897</orcidid><orcidid>https://orcid.org/0000-0002-8710-8764</orcidid><orcidid>https://orcid.org/0000-0002-1000-3083</orcidid><orcidid>https://orcid.org/0000-0002-9336-4262</orcidid></search><sort><creationdate>20241101</creationdate><title>Distributed Measurement and Modified Navier-Stokes Model of Gas Pressure Profile Evolution in Hollow-Core Antiresonant Fibres</title><author>Elistratova, Elizaveta ; Kelly, Thomas W. ; Davidson, Ian A. ; Sakr, Hesham ; Bradley, Thomas D. ; Taranta, Austin ; Poletti, Francesco ; Slavik, Radan ; Horak, Peter ; Wheeler, Natalie V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-46991d8a90d46031c970b0cf0339bc0dd1d8298bf2931aab9338f52b8d12c2793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atmospheric modeling</topic><topic>Electron tubes</topic><topic>Evolution</topic><topic>Filling</topic><topic>Fluid flow</topic><topic>Gas dynamics</topic><topic>gas filling</topic><topic>Gas flow</topic><topic>Gas pressure</topic><topic>GDRI</topic><topic>Hollow waveguides</topic><topic>Hollow-core fibres (HCFs)</topic><topic>Long fibers</topic><topic>Mathematical models</topic><topic>Navier-Stokes equations</topic><topic>Optical fibers</topic><topic>Optical properties</topic><topic>optical time-domain reflectometry</topic><topic>Pressure distribution</topic><topic>Pressure measurement</topic><topic>pressure profile</topic><topic>Reflectometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elistratova, Elizaveta</creatorcontrib><creatorcontrib>Kelly, Thomas W.</creatorcontrib><creatorcontrib>Davidson, Ian A.</creatorcontrib><creatorcontrib>Sakr, Hesham</creatorcontrib><creatorcontrib>Bradley, Thomas D.</creatorcontrib><creatorcontrib>Taranta, Austin</creatorcontrib><creatorcontrib>Poletti, Francesco</creatorcontrib><creatorcontrib>Slavik, Radan</creatorcontrib><creatorcontrib>Horak, Peter</creatorcontrib><creatorcontrib>Wheeler, Natalie V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of selected topics in quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Elistratova, Elizaveta</au><au>Kelly, Thomas W.</au><au>Davidson, Ian A.</au><au>Sakr, Hesham</au><au>Bradley, Thomas D.</au><au>Taranta, Austin</au><au>Poletti, Francesco</au><au>Slavik, Radan</au><au>Horak, Peter</au><au>Wheeler, Natalie V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Measurement and Modified Navier-Stokes Model of Gas Pressure Profile Evolution in Hollow-Core Antiresonant Fibres</atitle><jtitle>IEEE journal of selected topics in quantum electronics</jtitle><stitle>JSTQE</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>30</volume><issue>6: Advances and Applications of Hollow-Core Fibers</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1077-260X</issn><eissn>1558-4542</eissn><coden>IJSQEN</coden><abstract>Recent progress in reducing the loss of hollow-core fibres (HCFs) makes them great candidates for many fibre applications. However, as the fibre's optical properties depend on the gas pressure and composition within the core and cladding holes, it is essential to understand the gas dynamics at play when the fibres are pressurised, vented or evacuated. Here, we investigate the gas flow dynamics along the core of an HCF with a more complex microstructure design, as is typical of recent state-of-the-art HCFs. We use a novel distributed technique based on optical time-domain reflectometry (OTDR). This technique enables measurement of the evolution of the pressure distribution within the hollow core during the gas-filling process over long fibre lengths. Using these results, we show that the pressure distribution inside the HCF can be simulated using simplified Navier-Stokes equations and approximating the fibre core as a simple cylindrical tube of <inline-formula><tex-math notation="LaTeX">\sim</tex-math></inline-formula> 0.7 times the fibre core diameter.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTQE.2024.3397456</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1265-9510</orcidid><orcidid>https://orcid.org/0009-0009-1678-1706</orcidid><orcidid>https://orcid.org/0000-0002-4154-8414</orcidid><orcidid>https://orcid.org/0000-0002-5666-6800</orcidid><orcidid>https://orcid.org/0000-0002-1258-4213</orcidid><orcidid>https://orcid.org/0000-0001-6568-5811</orcidid><orcidid>https://orcid.org/0000-0003-0007-4897</orcidid><orcidid>https://orcid.org/0000-0002-8710-8764</orcidid><orcidid>https://orcid.org/0000-0002-1000-3083</orcidid><orcidid>https://orcid.org/0000-0002-9336-4262</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1077-260X |
ispartof | IEEE journal of selected topics in quantum electronics, 2024-11, Vol.30 (6: Advances and Applications of Hollow-Core Fibers), p.1-10 |
issn | 1077-260X 1558-4542 |
language | eng |
recordid | cdi_proquest_journals_3056007512 |
source | IEEE Electronic Library (IEL) |
subjects | Atmospheric modeling Electron tubes Evolution Filling Fluid flow Gas dynamics gas filling Gas flow Gas pressure GDRI Hollow waveguides Hollow-core fibres (HCFs) Long fibers Mathematical models Navier-Stokes equations Optical fibers Optical properties optical time-domain reflectometry Pressure distribution Pressure measurement pressure profile Reflectometry |
title | Distributed Measurement and Modified Navier-Stokes Model of Gas Pressure Profile Evolution in Hollow-Core Antiresonant Fibres |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T00%3A46%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Measurement%20and%20Modified%20Navier-Stokes%20Model%20of%20Gas%20Pressure%20Profile%20Evolution%20in%20Hollow-Core%20Antiresonant%20Fibres&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20quantum%20electronics&rft.au=Elistratova,%20Elizaveta&rft.date=2024-11-01&rft.volume=30&rft.issue=6:%20Advances%20and%20Applications%20of%20Hollow-Core%20Fibers&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1077-260X&rft.eissn=1558-4542&rft.coden=IJSQEN&rft_id=info:doi/10.1109/JSTQE.2024.3397456&rft_dat=%3Cproquest_RIE%3E3056007512%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3056007512&rft_id=info:pmid/&rft_ieee_id=10521722&rfr_iscdi=true |