Study on pyrolysis characteristics, kinetics and flame-retardant mechanism of ultra-thin intumescent fire-retardant coating for steel structures by thermogravimetric analysis and shuffled complex evolution
As one of the most effective fire prevention measures, the ultra-thin intumescent fire-retardant coating (IFRC) is widely used to coat the surface of steel structure in buildings. The aim of this work was to investigate the pyrolysis characteristics, kinetics and flame-retardant mechanism of ultra-t...
Gespeichert in:
Veröffentlicht in: | Polymer bulletin (Berlin, Germany) Germany), 2024-06, Vol.81 (9), p.7963-7978 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7978 |
---|---|
container_issue | 9 |
container_start_page | 7963 |
container_title | Polymer bulletin (Berlin, Germany) |
container_volume | 81 |
creator | Zhang, Jiaqing Huang, Yubiao He, Lingxin Zhang, Juan He, Chenggang Guo, Yi Shang, Fengju Ding, Yanming |
description | As one of the most effective fire prevention measures, the ultra-thin intumescent fire-retardant coating (IFRC) is widely used to coat the surface of steel structure in buildings. The aim of this work was to investigate the pyrolysis characteristics, kinetics and flame-retardant mechanism of ultra-thin IFRC for dealing with the fire hazards of steel structures. Thermogravimetric experiments were carried out at multiple heating rates. The thermogravimetric analysis results showed that the whole thermal degradation process could be divided into two stages. In Stage I, the active filler and resin released H
2
O and other small molecules with the mass loss of 10%. Stage II was assigned to the intramolecular and intermolecular reactions of the matrix resin, catalyst, carbon forming agent and foaming agent in the ultra-thin IFRC, which released the flame-retardant gases NH
3
, H
2
O and CO
2
. The initial kinetic parameters were obtained by the model-free method, and then the shuffled complex evolution (SCE) algorithm was used to optimize these proposed kinetic parameters. Moreover, the predicted pyrolysis curves based on optimized kinetic parameters were compared with experimental data, and the good agreement was achieved. Eventually, the flame-retardant mechanism in different stages was speculated, which could provide the basis and reference for the development and application of the ultra-thin IFRC. |
doi_str_mv | 10.1007/s00289-023-05074-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3055926001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3055926001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-12fdb8cf134b60876cd2b4e886930eea103fe5818222af68872f293ffebdf8433</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhSNEJYbCC7CyxBZT_ySOs0QVFKRKXdCuI8e5nnFJ7OHaqUjfkXeqhyDBCja-tvSd46N7quoNZ-85Y-1FYkzojjIhKWtYW9PHZ9WO11JRUdfd82rHeMso07J7Ub1M6Z6Vt1J8V_38mpdxJTGQ44pxWpNPxB4MGpsBfcrepnfkmw9wuhETRuImMwNFyAZHEzKZofDBp5lER5Ypo6H54APxIS8zJAuFcR7_lthosg974iKSlAGmcuJi84KQyLCSfACc4x7Ng58ho7flY7NlOyVIh8W5CcbiMx8n-EHgIU5L9jG8qs6cmRK8_j3Pq7tPH28vP9Prm6svlx-uqRWdzpQLNw7aOi7rQTHdKjuKoQatVScZgOFMOmg010II45TWrXCik87BMDpdS3levd18jxi_L5Byfx8XLBlTL1nTdEKVBf-PUko0vCmU2CiLMSUE1x_RzwbXnrP-VG6_lduXcvtf5faPRSQ3USpw2AP-sf6H6glNCa7n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3055662515</pqid></control><display><type>article</type><title>Study on pyrolysis characteristics, kinetics and flame-retardant mechanism of ultra-thin intumescent fire-retardant coating for steel structures by thermogravimetric analysis and shuffled complex evolution</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhang, Jiaqing ; Huang, Yubiao ; He, Lingxin ; Zhang, Juan ; He, Chenggang ; Guo, Yi ; Shang, Fengju ; Ding, Yanming</creator><creatorcontrib>Zhang, Jiaqing ; Huang, Yubiao ; He, Lingxin ; Zhang, Juan ; He, Chenggang ; Guo, Yi ; Shang, Fengju ; Ding, Yanming</creatorcontrib><description>As one of the most effective fire prevention measures, the ultra-thin intumescent fire-retardant coating (IFRC) is widely used to coat the surface of steel structure in buildings. The aim of this work was to investigate the pyrolysis characteristics, kinetics and flame-retardant mechanism of ultra-thin IFRC for dealing with the fire hazards of steel structures. Thermogravimetric experiments were carried out at multiple heating rates. The thermogravimetric analysis results showed that the whole thermal degradation process could be divided into two stages. In Stage I, the active filler and resin released H
2
O and other small molecules with the mass loss of 10%. Stage II was assigned to the intramolecular and intermolecular reactions of the matrix resin, catalyst, carbon forming agent and foaming agent in the ultra-thin IFRC, which released the flame-retardant gases NH
3
, H
2
O and CO
2
. The initial kinetic parameters were obtained by the model-free method, and then the shuffled complex evolution (SCE) algorithm was used to optimize these proposed kinetic parameters. Moreover, the predicted pyrolysis curves based on optimized kinetic parameters were compared with experimental data, and the good agreement was achieved. Eventually, the flame-retardant mechanism in different stages was speculated, which could provide the basis and reference for the development and application of the ultra-thin IFRC.</description><identifier>ISSN: 0170-0839</identifier><identifier>EISSN: 1436-2449</identifier><identifier>DOI: 10.1007/s00289-023-05074-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Ammonia ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Complex Fluids and Microfluidics ; Decomposition ; Evolutionary algorithms ; Fire hazards ; Fire prevention ; Flame retardants ; Foaming agents ; High temperature ; Kinetics ; Methods ; Optimization ; Organic Chemistry ; Original Paper ; Parameters ; Physical Chemistry ; Polymer Sciences ; Pyrolysis ; Resins ; Soft and Granular Matter ; Steel structures ; Thermal degradation ; Thermogravimetric analysis</subject><ispartof>Polymer bulletin (Berlin, Germany), 2024-06, Vol.81 (9), p.7963-7978</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c298t-12fdb8cf134b60876cd2b4e886930eea103fe5818222af68872f293ffebdf8433</cites><orcidid>0000-0003-3936-7531</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00289-023-05074-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00289-023-05074-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Zhang, Jiaqing</creatorcontrib><creatorcontrib>Huang, Yubiao</creatorcontrib><creatorcontrib>He, Lingxin</creatorcontrib><creatorcontrib>Zhang, Juan</creatorcontrib><creatorcontrib>He, Chenggang</creatorcontrib><creatorcontrib>Guo, Yi</creatorcontrib><creatorcontrib>Shang, Fengju</creatorcontrib><creatorcontrib>Ding, Yanming</creatorcontrib><title>Study on pyrolysis characteristics, kinetics and flame-retardant mechanism of ultra-thin intumescent fire-retardant coating for steel structures by thermogravimetric analysis and shuffled complex evolution</title><title>Polymer bulletin (Berlin, Germany)</title><addtitle>Polym. Bull</addtitle><description>As one of the most effective fire prevention measures, the ultra-thin intumescent fire-retardant coating (IFRC) is widely used to coat the surface of steel structure in buildings. The aim of this work was to investigate the pyrolysis characteristics, kinetics and flame-retardant mechanism of ultra-thin IFRC for dealing with the fire hazards of steel structures. Thermogravimetric experiments were carried out at multiple heating rates. The thermogravimetric analysis results showed that the whole thermal degradation process could be divided into two stages. In Stage I, the active filler and resin released H
2
O and other small molecules with the mass loss of 10%. Stage II was assigned to the intramolecular and intermolecular reactions of the matrix resin, catalyst, carbon forming agent and foaming agent in the ultra-thin IFRC, which released the flame-retardant gases NH
3
, H
2
O and CO
2
. The initial kinetic parameters were obtained by the model-free method, and then the shuffled complex evolution (SCE) algorithm was used to optimize these proposed kinetic parameters. Moreover, the predicted pyrolysis curves based on optimized kinetic parameters were compared with experimental data, and the good agreement was achieved. Eventually, the flame-retardant mechanism in different stages was speculated, which could provide the basis and reference for the development and application of the ultra-thin IFRC.</description><subject>Algorithms</subject><subject>Ammonia</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Complex Fluids and Microfluidics</subject><subject>Decomposition</subject><subject>Evolutionary algorithms</subject><subject>Fire hazards</subject><subject>Fire prevention</subject><subject>Flame retardants</subject><subject>Foaming agents</subject><subject>High temperature</subject><subject>Kinetics</subject><subject>Methods</subject><subject>Optimization</subject><subject>Organic Chemistry</subject><subject>Original Paper</subject><subject>Parameters</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Pyrolysis</subject><subject>Resins</subject><subject>Soft and Granular Matter</subject><subject>Steel structures</subject><subject>Thermal degradation</subject><subject>Thermogravimetric analysis</subject><issn>0170-0839</issn><issn>1436-2449</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u1DAUhSNEJYbCC7CyxBZT_ySOs0QVFKRKXdCuI8e5nnFJ7OHaqUjfkXeqhyDBCja-tvSd46N7quoNZ-85Y-1FYkzojjIhKWtYW9PHZ9WO11JRUdfd82rHeMso07J7Ub1M6Z6Vt1J8V_38mpdxJTGQ44pxWpNPxB4MGpsBfcrepnfkmw9wuhETRuImMwNFyAZHEzKZofDBp5lER5Ypo6H54APxIS8zJAuFcR7_lthosg974iKSlAGmcuJi84KQyLCSfACc4x7Ng58ho7flY7NlOyVIh8W5CcbiMx8n-EHgIU5L9jG8qs6cmRK8_j3Pq7tPH28vP9Prm6svlx-uqRWdzpQLNw7aOi7rQTHdKjuKoQatVScZgOFMOmg010II45TWrXCik87BMDpdS3levd18jxi_L5Byfx8XLBlTL1nTdEKVBf-PUko0vCmU2CiLMSUE1x_RzwbXnrP-VG6_lduXcvtf5faPRSQ3USpw2AP-sf6H6glNCa7n</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Zhang, Jiaqing</creator><creator>Huang, Yubiao</creator><creator>He, Lingxin</creator><creator>Zhang, Juan</creator><creator>He, Chenggang</creator><creator>Guo, Yi</creator><creator>Shang, Fengju</creator><creator>Ding, Yanming</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3936-7531</orcidid></search><sort><creationdate>20240601</creationdate><title>Study on pyrolysis characteristics, kinetics and flame-retardant mechanism of ultra-thin intumescent fire-retardant coating for steel structures by thermogravimetric analysis and shuffled complex evolution</title><author>Zhang, Jiaqing ; Huang, Yubiao ; He, Lingxin ; Zhang, Juan ; He, Chenggang ; Guo, Yi ; Shang, Fengju ; Ding, Yanming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-12fdb8cf134b60876cd2b4e886930eea103fe5818222af68872f293ffebdf8433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Ammonia</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Complex Fluids and Microfluidics</topic><topic>Decomposition</topic><topic>Evolutionary algorithms</topic><topic>Fire hazards</topic><topic>Fire prevention</topic><topic>Flame retardants</topic><topic>Foaming agents</topic><topic>High temperature</topic><topic>Kinetics</topic><topic>Methods</topic><topic>Optimization</topic><topic>Organic Chemistry</topic><topic>Original Paper</topic><topic>Parameters</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Pyrolysis</topic><topic>Resins</topic><topic>Soft and Granular Matter</topic><topic>Steel structures</topic><topic>Thermal degradation</topic><topic>Thermogravimetric analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jiaqing</creatorcontrib><creatorcontrib>Huang, Yubiao</creatorcontrib><creatorcontrib>He, Lingxin</creatorcontrib><creatorcontrib>Zhang, Juan</creatorcontrib><creatorcontrib>He, Chenggang</creatorcontrib><creatorcontrib>Guo, Yi</creatorcontrib><creatorcontrib>Shang, Fengju</creatorcontrib><creatorcontrib>Ding, Yanming</creatorcontrib><collection>CrossRef</collection><jtitle>Polymer bulletin (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jiaqing</au><au>Huang, Yubiao</au><au>He, Lingxin</au><au>Zhang, Juan</au><au>He, Chenggang</au><au>Guo, Yi</au><au>Shang, Fengju</au><au>Ding, Yanming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on pyrolysis characteristics, kinetics and flame-retardant mechanism of ultra-thin intumescent fire-retardant coating for steel structures by thermogravimetric analysis and shuffled complex evolution</atitle><jtitle>Polymer bulletin (Berlin, Germany)</jtitle><stitle>Polym. Bull</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>81</volume><issue>9</issue><spage>7963</spage><epage>7978</epage><pages>7963-7978</pages><issn>0170-0839</issn><eissn>1436-2449</eissn><abstract>As one of the most effective fire prevention measures, the ultra-thin intumescent fire-retardant coating (IFRC) is widely used to coat the surface of steel structure in buildings. The aim of this work was to investigate the pyrolysis characteristics, kinetics and flame-retardant mechanism of ultra-thin IFRC for dealing with the fire hazards of steel structures. Thermogravimetric experiments were carried out at multiple heating rates. The thermogravimetric analysis results showed that the whole thermal degradation process could be divided into two stages. In Stage I, the active filler and resin released H
2
O and other small molecules with the mass loss of 10%. Stage II was assigned to the intramolecular and intermolecular reactions of the matrix resin, catalyst, carbon forming agent and foaming agent in the ultra-thin IFRC, which released the flame-retardant gases NH
3
, H
2
O and CO
2
. The initial kinetic parameters were obtained by the model-free method, and then the shuffled complex evolution (SCE) algorithm was used to optimize these proposed kinetic parameters. Moreover, the predicted pyrolysis curves based on optimized kinetic parameters were compared with experimental data, and the good agreement was achieved. Eventually, the flame-retardant mechanism in different stages was speculated, which could provide the basis and reference for the development and application of the ultra-thin IFRC.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00289-023-05074-z</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-3936-7531</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-0839 |
ispartof | Polymer bulletin (Berlin, Germany), 2024-06, Vol.81 (9), p.7963-7978 |
issn | 0170-0839 1436-2449 |
language | eng |
recordid | cdi_proquest_journals_3055926001 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Ammonia Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Complex Fluids and Microfluidics Decomposition Evolutionary algorithms Fire hazards Fire prevention Flame retardants Foaming agents High temperature Kinetics Methods Optimization Organic Chemistry Original Paper Parameters Physical Chemistry Polymer Sciences Pyrolysis Resins Soft and Granular Matter Steel structures Thermal degradation Thermogravimetric analysis |
title | Study on pyrolysis characteristics, kinetics and flame-retardant mechanism of ultra-thin intumescent fire-retardant coating for steel structures by thermogravimetric analysis and shuffled complex evolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T03%3A27%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20pyrolysis%20characteristics,%20kinetics%20and%20flame-retardant%20mechanism%20of%20ultra-thin%20intumescent%20fire-retardant%20coating%20for%20steel%20structures%20by%20thermogravimetric%20analysis%20and%20shuffled%20complex%20evolution&rft.jtitle=Polymer%20bulletin%20(Berlin,%20Germany)&rft.au=Zhang,%20Jiaqing&rft.date=2024-06-01&rft.volume=81&rft.issue=9&rft.spage=7963&rft.epage=7978&rft.pages=7963-7978&rft.issn=0170-0839&rft.eissn=1436-2449&rft_id=info:doi/10.1007/s00289-023-05074-z&rft_dat=%3Cproquest_cross%3E3055926001%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3055662515&rft_id=info:pmid/&rfr_iscdi=true |