Study on pyrolysis characteristics, kinetics and flame-retardant mechanism of ultra-thin intumescent fire-retardant coating for steel structures by thermogravimetric analysis and shuffled complex evolution

As one of the most effective fire prevention measures, the ultra-thin intumescent fire-retardant coating (IFRC) is widely used to coat the surface of steel structure in buildings. The aim of this work was to investigate the pyrolysis characteristics, kinetics and flame-retardant mechanism of ultra-t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer bulletin (Berlin, Germany) Germany), 2024-06, Vol.81 (9), p.7963-7978
Hauptverfasser: Zhang, Jiaqing, Huang, Yubiao, He, Lingxin, Zhang, Juan, He, Chenggang, Guo, Yi, Shang, Fengju, Ding, Yanming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7978
container_issue 9
container_start_page 7963
container_title Polymer bulletin (Berlin, Germany)
container_volume 81
creator Zhang, Jiaqing
Huang, Yubiao
He, Lingxin
Zhang, Juan
He, Chenggang
Guo, Yi
Shang, Fengju
Ding, Yanming
description As one of the most effective fire prevention measures, the ultra-thin intumescent fire-retardant coating (IFRC) is widely used to coat the surface of steel structure in buildings. The aim of this work was to investigate the pyrolysis characteristics, kinetics and flame-retardant mechanism of ultra-thin IFRC for dealing with the fire hazards of steel structures. Thermogravimetric experiments were carried out at multiple heating rates. The thermogravimetric analysis results showed that the whole thermal degradation process could be divided into two stages. In Stage I, the active filler and resin released H 2 O and other small molecules with the mass loss of 10%. Stage II was assigned to the intramolecular and intermolecular reactions of the matrix resin, catalyst, carbon forming agent and foaming agent in the ultra-thin IFRC, which released the flame-retardant gases NH 3 , H 2 O and CO 2 . The initial kinetic parameters were obtained by the model-free method, and then the shuffled complex evolution (SCE) algorithm was used to optimize these proposed kinetic parameters. Moreover, the predicted pyrolysis curves based on optimized kinetic parameters were compared with experimental data, and the good agreement was achieved. Eventually, the flame-retardant mechanism in different stages was speculated, which could provide the basis and reference for the development and application of the ultra-thin IFRC.
doi_str_mv 10.1007/s00289-023-05074-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3055926001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3055926001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-12fdb8cf134b60876cd2b4e886930eea103fe5818222af68872f293ffebdf8433</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhSNEJYbCC7CyxBZT_ySOs0QVFKRKXdCuI8e5nnFJ7OHaqUjfkXeqhyDBCja-tvSd46N7quoNZ-85Y-1FYkzojjIhKWtYW9PHZ9WO11JRUdfd82rHeMso07J7Ub1M6Z6Vt1J8V_38mpdxJTGQ44pxWpNPxB4MGpsBfcrepnfkmw9wuhETRuImMwNFyAZHEzKZofDBp5lER5Ypo6H54APxIS8zJAuFcR7_lthosg974iKSlAGmcuJi84KQyLCSfACc4x7Ng58ho7flY7NlOyVIh8W5CcbiMx8n-EHgIU5L9jG8qs6cmRK8_j3Pq7tPH28vP9Prm6svlx-uqRWdzpQLNw7aOi7rQTHdKjuKoQatVScZgOFMOmg010II45TWrXCik87BMDpdS3levd18jxi_L5Byfx8XLBlTL1nTdEKVBf-PUko0vCmU2CiLMSUE1x_RzwbXnrP-VG6_lduXcvtf5faPRSQ3USpw2AP-sf6H6glNCa7n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3055662515</pqid></control><display><type>article</type><title>Study on pyrolysis characteristics, kinetics and flame-retardant mechanism of ultra-thin intumescent fire-retardant coating for steel structures by thermogravimetric analysis and shuffled complex evolution</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhang, Jiaqing ; Huang, Yubiao ; He, Lingxin ; Zhang, Juan ; He, Chenggang ; Guo, Yi ; Shang, Fengju ; Ding, Yanming</creator><creatorcontrib>Zhang, Jiaqing ; Huang, Yubiao ; He, Lingxin ; Zhang, Juan ; He, Chenggang ; Guo, Yi ; Shang, Fengju ; Ding, Yanming</creatorcontrib><description>As one of the most effective fire prevention measures, the ultra-thin intumescent fire-retardant coating (IFRC) is widely used to coat the surface of steel structure in buildings. The aim of this work was to investigate the pyrolysis characteristics, kinetics and flame-retardant mechanism of ultra-thin IFRC for dealing with the fire hazards of steel structures. Thermogravimetric experiments were carried out at multiple heating rates. The thermogravimetric analysis results showed that the whole thermal degradation process could be divided into two stages. In Stage I, the active filler and resin released H 2 O and other small molecules with the mass loss of 10%. Stage II was assigned to the intramolecular and intermolecular reactions of the matrix resin, catalyst, carbon forming agent and foaming agent in the ultra-thin IFRC, which released the flame-retardant gases NH 3 , H 2 O and CO 2 . The initial kinetic parameters were obtained by the model-free method, and then the shuffled complex evolution (SCE) algorithm was used to optimize these proposed kinetic parameters. Moreover, the predicted pyrolysis curves based on optimized kinetic parameters were compared with experimental data, and the good agreement was achieved. Eventually, the flame-retardant mechanism in different stages was speculated, which could provide the basis and reference for the development and application of the ultra-thin IFRC.</description><identifier>ISSN: 0170-0839</identifier><identifier>EISSN: 1436-2449</identifier><identifier>DOI: 10.1007/s00289-023-05074-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Ammonia ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Complex Fluids and Microfluidics ; Decomposition ; Evolutionary algorithms ; Fire hazards ; Fire prevention ; Flame retardants ; Foaming agents ; High temperature ; Kinetics ; Methods ; Optimization ; Organic Chemistry ; Original Paper ; Parameters ; Physical Chemistry ; Polymer Sciences ; Pyrolysis ; Resins ; Soft and Granular Matter ; Steel structures ; Thermal degradation ; Thermogravimetric analysis</subject><ispartof>Polymer bulletin (Berlin, Germany), 2024-06, Vol.81 (9), p.7963-7978</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c298t-12fdb8cf134b60876cd2b4e886930eea103fe5818222af68872f293ffebdf8433</cites><orcidid>0000-0003-3936-7531</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00289-023-05074-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00289-023-05074-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Zhang, Jiaqing</creatorcontrib><creatorcontrib>Huang, Yubiao</creatorcontrib><creatorcontrib>He, Lingxin</creatorcontrib><creatorcontrib>Zhang, Juan</creatorcontrib><creatorcontrib>He, Chenggang</creatorcontrib><creatorcontrib>Guo, Yi</creatorcontrib><creatorcontrib>Shang, Fengju</creatorcontrib><creatorcontrib>Ding, Yanming</creatorcontrib><title>Study on pyrolysis characteristics, kinetics and flame-retardant mechanism of ultra-thin intumescent fire-retardant coating for steel structures by thermogravimetric analysis and shuffled complex evolution</title><title>Polymer bulletin (Berlin, Germany)</title><addtitle>Polym. Bull</addtitle><description>As one of the most effective fire prevention measures, the ultra-thin intumescent fire-retardant coating (IFRC) is widely used to coat the surface of steel structure in buildings. The aim of this work was to investigate the pyrolysis characteristics, kinetics and flame-retardant mechanism of ultra-thin IFRC for dealing with the fire hazards of steel structures. Thermogravimetric experiments were carried out at multiple heating rates. The thermogravimetric analysis results showed that the whole thermal degradation process could be divided into two stages. In Stage I, the active filler and resin released H 2 O and other small molecules with the mass loss of 10%. Stage II was assigned to the intramolecular and intermolecular reactions of the matrix resin, catalyst, carbon forming agent and foaming agent in the ultra-thin IFRC, which released the flame-retardant gases NH 3 , H 2 O and CO 2 . The initial kinetic parameters were obtained by the model-free method, and then the shuffled complex evolution (SCE) algorithm was used to optimize these proposed kinetic parameters. Moreover, the predicted pyrolysis curves based on optimized kinetic parameters were compared with experimental data, and the good agreement was achieved. Eventually, the flame-retardant mechanism in different stages was speculated, which could provide the basis and reference for the development and application of the ultra-thin IFRC.</description><subject>Algorithms</subject><subject>Ammonia</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Complex Fluids and Microfluidics</subject><subject>Decomposition</subject><subject>Evolutionary algorithms</subject><subject>Fire hazards</subject><subject>Fire prevention</subject><subject>Flame retardants</subject><subject>Foaming agents</subject><subject>High temperature</subject><subject>Kinetics</subject><subject>Methods</subject><subject>Optimization</subject><subject>Organic Chemistry</subject><subject>Original Paper</subject><subject>Parameters</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Pyrolysis</subject><subject>Resins</subject><subject>Soft and Granular Matter</subject><subject>Steel structures</subject><subject>Thermal degradation</subject><subject>Thermogravimetric analysis</subject><issn>0170-0839</issn><issn>1436-2449</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u1DAUhSNEJYbCC7CyxBZT_ySOs0QVFKRKXdCuI8e5nnFJ7OHaqUjfkXeqhyDBCja-tvSd46N7quoNZ-85Y-1FYkzojjIhKWtYW9PHZ9WO11JRUdfd82rHeMso07J7Ub1M6Z6Vt1J8V_38mpdxJTGQ44pxWpNPxB4MGpsBfcrepnfkmw9wuhETRuImMwNFyAZHEzKZofDBp5lER5Ypo6H54APxIS8zJAuFcR7_lthosg974iKSlAGmcuJi84KQyLCSfACc4x7Ng58ho7flY7NlOyVIh8W5CcbiMx8n-EHgIU5L9jG8qs6cmRK8_j3Pq7tPH28vP9Prm6svlx-uqRWdzpQLNw7aOi7rQTHdKjuKoQatVScZgOFMOmg010II45TWrXCik87BMDpdS3levd18jxi_L5Byfx8XLBlTL1nTdEKVBf-PUko0vCmU2CiLMSUE1x_RzwbXnrP-VG6_lduXcvtf5faPRSQ3USpw2AP-sf6H6glNCa7n</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Zhang, Jiaqing</creator><creator>Huang, Yubiao</creator><creator>He, Lingxin</creator><creator>Zhang, Juan</creator><creator>He, Chenggang</creator><creator>Guo, Yi</creator><creator>Shang, Fengju</creator><creator>Ding, Yanming</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3936-7531</orcidid></search><sort><creationdate>20240601</creationdate><title>Study on pyrolysis characteristics, kinetics and flame-retardant mechanism of ultra-thin intumescent fire-retardant coating for steel structures by thermogravimetric analysis and shuffled complex evolution</title><author>Zhang, Jiaqing ; Huang, Yubiao ; He, Lingxin ; Zhang, Juan ; He, Chenggang ; Guo, Yi ; Shang, Fengju ; Ding, Yanming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-12fdb8cf134b60876cd2b4e886930eea103fe5818222af68872f293ffebdf8433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Ammonia</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Complex Fluids and Microfluidics</topic><topic>Decomposition</topic><topic>Evolutionary algorithms</topic><topic>Fire hazards</topic><topic>Fire prevention</topic><topic>Flame retardants</topic><topic>Foaming agents</topic><topic>High temperature</topic><topic>Kinetics</topic><topic>Methods</topic><topic>Optimization</topic><topic>Organic Chemistry</topic><topic>Original Paper</topic><topic>Parameters</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Pyrolysis</topic><topic>Resins</topic><topic>Soft and Granular Matter</topic><topic>Steel structures</topic><topic>Thermal degradation</topic><topic>Thermogravimetric analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jiaqing</creatorcontrib><creatorcontrib>Huang, Yubiao</creatorcontrib><creatorcontrib>He, Lingxin</creatorcontrib><creatorcontrib>Zhang, Juan</creatorcontrib><creatorcontrib>He, Chenggang</creatorcontrib><creatorcontrib>Guo, Yi</creatorcontrib><creatorcontrib>Shang, Fengju</creatorcontrib><creatorcontrib>Ding, Yanming</creatorcontrib><collection>CrossRef</collection><jtitle>Polymer bulletin (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jiaqing</au><au>Huang, Yubiao</au><au>He, Lingxin</au><au>Zhang, Juan</au><au>He, Chenggang</au><au>Guo, Yi</au><au>Shang, Fengju</au><au>Ding, Yanming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on pyrolysis characteristics, kinetics and flame-retardant mechanism of ultra-thin intumescent fire-retardant coating for steel structures by thermogravimetric analysis and shuffled complex evolution</atitle><jtitle>Polymer bulletin (Berlin, Germany)</jtitle><stitle>Polym. Bull</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>81</volume><issue>9</issue><spage>7963</spage><epage>7978</epage><pages>7963-7978</pages><issn>0170-0839</issn><eissn>1436-2449</eissn><abstract>As one of the most effective fire prevention measures, the ultra-thin intumescent fire-retardant coating (IFRC) is widely used to coat the surface of steel structure in buildings. The aim of this work was to investigate the pyrolysis characteristics, kinetics and flame-retardant mechanism of ultra-thin IFRC for dealing with the fire hazards of steel structures. Thermogravimetric experiments were carried out at multiple heating rates. The thermogravimetric analysis results showed that the whole thermal degradation process could be divided into two stages. In Stage I, the active filler and resin released H 2 O and other small molecules with the mass loss of 10%. Stage II was assigned to the intramolecular and intermolecular reactions of the matrix resin, catalyst, carbon forming agent and foaming agent in the ultra-thin IFRC, which released the flame-retardant gases NH 3 , H 2 O and CO 2 . The initial kinetic parameters were obtained by the model-free method, and then the shuffled complex evolution (SCE) algorithm was used to optimize these proposed kinetic parameters. Moreover, the predicted pyrolysis curves based on optimized kinetic parameters were compared with experimental data, and the good agreement was achieved. Eventually, the flame-retardant mechanism in different stages was speculated, which could provide the basis and reference for the development and application of the ultra-thin IFRC.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00289-023-05074-z</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-3936-7531</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-0839
ispartof Polymer bulletin (Berlin, Germany), 2024-06, Vol.81 (9), p.7963-7978
issn 0170-0839
1436-2449
language eng
recordid cdi_proquest_journals_3055926001
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Ammonia
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Complex Fluids and Microfluidics
Decomposition
Evolutionary algorithms
Fire hazards
Fire prevention
Flame retardants
Foaming agents
High temperature
Kinetics
Methods
Optimization
Organic Chemistry
Original Paper
Parameters
Physical Chemistry
Polymer Sciences
Pyrolysis
Resins
Soft and Granular Matter
Steel structures
Thermal degradation
Thermogravimetric analysis
title Study on pyrolysis characteristics, kinetics and flame-retardant mechanism of ultra-thin intumescent fire-retardant coating for steel structures by thermogravimetric analysis and shuffled complex evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T03%3A27%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20pyrolysis%20characteristics,%20kinetics%20and%20flame-retardant%20mechanism%20of%20ultra-thin%20intumescent%20fire-retardant%20coating%20for%20steel%20structures%20by%20thermogravimetric%20analysis%20and%20shuffled%20complex%20evolution&rft.jtitle=Polymer%20bulletin%20(Berlin,%20Germany)&rft.au=Zhang,%20Jiaqing&rft.date=2024-06-01&rft.volume=81&rft.issue=9&rft.spage=7963&rft.epage=7978&rft.pages=7963-7978&rft.issn=0170-0839&rft.eissn=1436-2449&rft_id=info:doi/10.1007/s00289-023-05074-z&rft_dat=%3Cproquest_cross%3E3055926001%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3055662515&rft_id=info:pmid/&rfr_iscdi=true