Algorithmic Fairness: A Tolerance Perspective

Recent advancements in machine learning and deep learning have brought algorithmic fairness into sharp focus, illuminating concerns over discriminatory decision making that negatively impacts certain individuals or groups. These concerns have manifested in legal, ethical, and societal challenges, in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-04
Hauptverfasser: Luo, Renqiang, Tang, Tao, Xia, Feng, Liu, Jiaying, Xu, Chengpei, Leo Yu Zhang, Xiang, Wei, Zhang, Chengqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Luo, Renqiang
Tang, Tao
Xia, Feng
Liu, Jiaying
Xu, Chengpei
Leo Yu Zhang
Xiang, Wei
Zhang, Chengqi
description Recent advancements in machine learning and deep learning have brought algorithmic fairness into sharp focus, illuminating concerns over discriminatory decision making that negatively impacts certain individuals or groups. These concerns have manifested in legal, ethical, and societal challenges, including the erosion of trust in intelligent systems. In response, this survey delves into the existing literature on algorithmic fairness, specifically highlighting its multifaceted social consequences. We introduce a novel taxonomy based on 'tolerance', a term we define as the degree to which variations in fairness outcomes are acceptable, providing a structured approach to understanding the subtleties of fairness within algorithmic decisions. Our systematic review covers diverse industries, revealing critical insights into the balance between algorithmic decision making and social equity. By synthesizing these insights, we outline a series of emerging challenges and propose strategic directions for future research and policy making, with the goal of advancing the field towards more equitable algorithmic systems.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3055630209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3055630209</sourcerecordid><originalsourceid>FETCH-proquest_journals_30556302093</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQdcxJzy_KLMnIzUxWcEvMLMpLLS62UnBUCMnPSS1KzEtOVQhILSouSE0uySxL5WFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeGMDU1MzYwMjA0tj4lQBAKjwMcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3055630209</pqid></control><display><type>article</type><title>Algorithmic Fairness: A Tolerance Perspective</title><source>Free E- Journals</source><creator>Luo, Renqiang ; Tang, Tao ; Xia, Feng ; Liu, Jiaying ; Xu, Chengpei ; Leo Yu Zhang ; Xiang, Wei ; Zhang, Chengqi</creator><creatorcontrib>Luo, Renqiang ; Tang, Tao ; Xia, Feng ; Liu, Jiaying ; Xu, Chengpei ; Leo Yu Zhang ; Xiang, Wei ; Zhang, Chengqi</creatorcontrib><description>Recent advancements in machine learning and deep learning have brought algorithmic fairness into sharp focus, illuminating concerns over discriminatory decision making that negatively impacts certain individuals or groups. These concerns have manifested in legal, ethical, and societal challenges, including the erosion of trust in intelligent systems. In response, this survey delves into the existing literature on algorithmic fairness, specifically highlighting its multifaceted social consequences. We introduce a novel taxonomy based on 'tolerance', a term we define as the degree to which variations in fairness outcomes are acceptable, providing a structured approach to understanding the subtleties of fairness within algorithmic decisions. Our systematic review covers diverse industries, revealing critical insights into the balance between algorithmic decision making and social equity. By synthesizing these insights, we outline a series of emerging challenges and propose strategic directions for future research and policy making, with the goal of advancing the field towards more equitable algorithmic systems.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Decision making ; Deep learning ; Machine learning ; Taxonomy</subject><ispartof>arXiv.org, 2024-04</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Luo, Renqiang</creatorcontrib><creatorcontrib>Tang, Tao</creatorcontrib><creatorcontrib>Xia, Feng</creatorcontrib><creatorcontrib>Liu, Jiaying</creatorcontrib><creatorcontrib>Xu, Chengpei</creatorcontrib><creatorcontrib>Leo Yu Zhang</creatorcontrib><creatorcontrib>Xiang, Wei</creatorcontrib><creatorcontrib>Zhang, Chengqi</creatorcontrib><title>Algorithmic Fairness: A Tolerance Perspective</title><title>arXiv.org</title><description>Recent advancements in machine learning and deep learning have brought algorithmic fairness into sharp focus, illuminating concerns over discriminatory decision making that negatively impacts certain individuals or groups. These concerns have manifested in legal, ethical, and societal challenges, including the erosion of trust in intelligent systems. In response, this survey delves into the existing literature on algorithmic fairness, specifically highlighting its multifaceted social consequences. We introduce a novel taxonomy based on 'tolerance', a term we define as the degree to which variations in fairness outcomes are acceptable, providing a structured approach to understanding the subtleties of fairness within algorithmic decisions. Our systematic review covers diverse industries, revealing critical insights into the balance between algorithmic decision making and social equity. By synthesizing these insights, we outline a series of emerging challenges and propose strategic directions for future research and policy making, with the goal of advancing the field towards more equitable algorithmic systems.</description><subject>Algorithms</subject><subject>Decision making</subject><subject>Deep learning</subject><subject>Machine learning</subject><subject>Taxonomy</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQdcxJzy_KLMnIzUxWcEvMLMpLLS62UnBUCMnPSS1KzEtOVQhILSouSE0uySxL5WFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeGMDU1MzYwMjA0tj4lQBAKjwMcQ</recordid><startdate>20240426</startdate><enddate>20240426</enddate><creator>Luo, Renqiang</creator><creator>Tang, Tao</creator><creator>Xia, Feng</creator><creator>Liu, Jiaying</creator><creator>Xu, Chengpei</creator><creator>Leo Yu Zhang</creator><creator>Xiang, Wei</creator><creator>Zhang, Chengqi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240426</creationdate><title>Algorithmic Fairness: A Tolerance Perspective</title><author>Luo, Renqiang ; Tang, Tao ; Xia, Feng ; Liu, Jiaying ; Xu, Chengpei ; Leo Yu Zhang ; Xiang, Wei ; Zhang, Chengqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30556302093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Decision making</topic><topic>Deep learning</topic><topic>Machine learning</topic><topic>Taxonomy</topic><toplevel>online_resources</toplevel><creatorcontrib>Luo, Renqiang</creatorcontrib><creatorcontrib>Tang, Tao</creatorcontrib><creatorcontrib>Xia, Feng</creatorcontrib><creatorcontrib>Liu, Jiaying</creatorcontrib><creatorcontrib>Xu, Chengpei</creatorcontrib><creatorcontrib>Leo Yu Zhang</creatorcontrib><creatorcontrib>Xiang, Wei</creatorcontrib><creatorcontrib>Zhang, Chengqi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Renqiang</au><au>Tang, Tao</au><au>Xia, Feng</au><au>Liu, Jiaying</au><au>Xu, Chengpei</au><au>Leo Yu Zhang</au><au>Xiang, Wei</au><au>Zhang, Chengqi</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Algorithmic Fairness: A Tolerance Perspective</atitle><jtitle>arXiv.org</jtitle><date>2024-04-26</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Recent advancements in machine learning and deep learning have brought algorithmic fairness into sharp focus, illuminating concerns over discriminatory decision making that negatively impacts certain individuals or groups. These concerns have manifested in legal, ethical, and societal challenges, including the erosion of trust in intelligent systems. In response, this survey delves into the existing literature on algorithmic fairness, specifically highlighting its multifaceted social consequences. We introduce a novel taxonomy based on 'tolerance', a term we define as the degree to which variations in fairness outcomes are acceptable, providing a structured approach to understanding the subtleties of fairness within algorithmic decisions. Our systematic review covers diverse industries, revealing critical insights into the balance between algorithmic decision making and social equity. By synthesizing these insights, we outline a series of emerging challenges and propose strategic directions for future research and policy making, with the goal of advancing the field towards more equitable algorithmic systems.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_3055630209
source Free E- Journals
subjects Algorithms
Decision making
Deep learning
Machine learning
Taxonomy
title Algorithmic Fairness: A Tolerance Perspective
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A45%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Algorithmic%20Fairness:%20A%20Tolerance%20Perspective&rft.jtitle=arXiv.org&rft.au=Luo,%20Renqiang&rft.date=2024-04-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3055630209%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3055630209&rft_id=info:pmid/&rfr_iscdi=true