Algorithmic Fairness: A Tolerance Perspective
Recent advancements in machine learning and deep learning have brought algorithmic fairness into sharp focus, illuminating concerns over discriminatory decision making that negatively impacts certain individuals or groups. These concerns have manifested in legal, ethical, and societal challenges, in...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-04 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Luo, Renqiang Tang, Tao Xia, Feng Liu, Jiaying Xu, Chengpei Leo Yu Zhang Xiang, Wei Zhang, Chengqi |
description | Recent advancements in machine learning and deep learning have brought algorithmic fairness into sharp focus, illuminating concerns over discriminatory decision making that negatively impacts certain individuals or groups. These concerns have manifested in legal, ethical, and societal challenges, including the erosion of trust in intelligent systems. In response, this survey delves into the existing literature on algorithmic fairness, specifically highlighting its multifaceted social consequences. We introduce a novel taxonomy based on 'tolerance', a term we define as the degree to which variations in fairness outcomes are acceptable, providing a structured approach to understanding the subtleties of fairness within algorithmic decisions. Our systematic review covers diverse industries, revealing critical insights into the balance between algorithmic decision making and social equity. By synthesizing these insights, we outline a series of emerging challenges and propose strategic directions for future research and policy making, with the goal of advancing the field towards more equitable algorithmic systems. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3055630209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3055630209</sourcerecordid><originalsourceid>FETCH-proquest_journals_30556302093</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQdcxJzy_KLMnIzUxWcEvMLMpLLS62UnBUCMnPSS1KzEtOVQhILSouSE0uySxL5WFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeGMDU1MzYwMjA0tj4lQBAKjwMcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3055630209</pqid></control><display><type>article</type><title>Algorithmic Fairness: A Tolerance Perspective</title><source>Free E- Journals</source><creator>Luo, Renqiang ; Tang, Tao ; Xia, Feng ; Liu, Jiaying ; Xu, Chengpei ; Leo Yu Zhang ; Xiang, Wei ; Zhang, Chengqi</creator><creatorcontrib>Luo, Renqiang ; Tang, Tao ; Xia, Feng ; Liu, Jiaying ; Xu, Chengpei ; Leo Yu Zhang ; Xiang, Wei ; Zhang, Chengqi</creatorcontrib><description>Recent advancements in machine learning and deep learning have brought algorithmic fairness into sharp focus, illuminating concerns over discriminatory decision making that negatively impacts certain individuals or groups. These concerns have manifested in legal, ethical, and societal challenges, including the erosion of trust in intelligent systems. In response, this survey delves into the existing literature on algorithmic fairness, specifically highlighting its multifaceted social consequences. We introduce a novel taxonomy based on 'tolerance', a term we define as the degree to which variations in fairness outcomes are acceptable, providing a structured approach to understanding the subtleties of fairness within algorithmic decisions. Our systematic review covers diverse industries, revealing critical insights into the balance between algorithmic decision making and social equity. By synthesizing these insights, we outline a series of emerging challenges and propose strategic directions for future research and policy making, with the goal of advancing the field towards more equitable algorithmic systems.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Decision making ; Deep learning ; Machine learning ; Taxonomy</subject><ispartof>arXiv.org, 2024-04</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Luo, Renqiang</creatorcontrib><creatorcontrib>Tang, Tao</creatorcontrib><creatorcontrib>Xia, Feng</creatorcontrib><creatorcontrib>Liu, Jiaying</creatorcontrib><creatorcontrib>Xu, Chengpei</creatorcontrib><creatorcontrib>Leo Yu Zhang</creatorcontrib><creatorcontrib>Xiang, Wei</creatorcontrib><creatorcontrib>Zhang, Chengqi</creatorcontrib><title>Algorithmic Fairness: A Tolerance Perspective</title><title>arXiv.org</title><description>Recent advancements in machine learning and deep learning have brought algorithmic fairness into sharp focus, illuminating concerns over discriminatory decision making that negatively impacts certain individuals or groups. These concerns have manifested in legal, ethical, and societal challenges, including the erosion of trust in intelligent systems. In response, this survey delves into the existing literature on algorithmic fairness, specifically highlighting its multifaceted social consequences. We introduce a novel taxonomy based on 'tolerance', a term we define as the degree to which variations in fairness outcomes are acceptable, providing a structured approach to understanding the subtleties of fairness within algorithmic decisions. Our systematic review covers diverse industries, revealing critical insights into the balance between algorithmic decision making and social equity. By synthesizing these insights, we outline a series of emerging challenges and propose strategic directions for future research and policy making, with the goal of advancing the field towards more equitable algorithmic systems.</description><subject>Algorithms</subject><subject>Decision making</subject><subject>Deep learning</subject><subject>Machine learning</subject><subject>Taxonomy</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQdcxJzy_KLMnIzUxWcEvMLMpLLS62UnBUCMnPSS1KzEtOVQhILSouSE0uySxL5WFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeGMDU1MzYwMjA0tj4lQBAKjwMcQ</recordid><startdate>20240426</startdate><enddate>20240426</enddate><creator>Luo, Renqiang</creator><creator>Tang, Tao</creator><creator>Xia, Feng</creator><creator>Liu, Jiaying</creator><creator>Xu, Chengpei</creator><creator>Leo Yu Zhang</creator><creator>Xiang, Wei</creator><creator>Zhang, Chengqi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240426</creationdate><title>Algorithmic Fairness: A Tolerance Perspective</title><author>Luo, Renqiang ; Tang, Tao ; Xia, Feng ; Liu, Jiaying ; Xu, Chengpei ; Leo Yu Zhang ; Xiang, Wei ; Zhang, Chengqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30556302093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Decision making</topic><topic>Deep learning</topic><topic>Machine learning</topic><topic>Taxonomy</topic><toplevel>online_resources</toplevel><creatorcontrib>Luo, Renqiang</creatorcontrib><creatorcontrib>Tang, Tao</creatorcontrib><creatorcontrib>Xia, Feng</creatorcontrib><creatorcontrib>Liu, Jiaying</creatorcontrib><creatorcontrib>Xu, Chengpei</creatorcontrib><creatorcontrib>Leo Yu Zhang</creatorcontrib><creatorcontrib>Xiang, Wei</creatorcontrib><creatorcontrib>Zhang, Chengqi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Renqiang</au><au>Tang, Tao</au><au>Xia, Feng</au><au>Liu, Jiaying</au><au>Xu, Chengpei</au><au>Leo Yu Zhang</au><au>Xiang, Wei</au><au>Zhang, Chengqi</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Algorithmic Fairness: A Tolerance Perspective</atitle><jtitle>arXiv.org</jtitle><date>2024-04-26</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Recent advancements in machine learning and deep learning have brought algorithmic fairness into sharp focus, illuminating concerns over discriminatory decision making that negatively impacts certain individuals or groups. These concerns have manifested in legal, ethical, and societal challenges, including the erosion of trust in intelligent systems. In response, this survey delves into the existing literature on algorithmic fairness, specifically highlighting its multifaceted social consequences. We introduce a novel taxonomy based on 'tolerance', a term we define as the degree to which variations in fairness outcomes are acceptable, providing a structured approach to understanding the subtleties of fairness within algorithmic decisions. Our systematic review covers diverse industries, revealing critical insights into the balance between algorithmic decision making and social equity. By synthesizing these insights, we outline a series of emerging challenges and propose strategic directions for future research and policy making, with the goal of advancing the field towards more equitable algorithmic systems.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3055630209 |
source | Free E- Journals |
subjects | Algorithms Decision making Deep learning Machine learning Taxonomy |
title | Algorithmic Fairness: A Tolerance Perspective |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A45%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Algorithmic%20Fairness:%20A%20Tolerance%20Perspective&rft.jtitle=arXiv.org&rft.au=Luo,%20Renqiang&rft.date=2024-04-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3055630209%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3055630209&rft_id=info:pmid/&rfr_iscdi=true |