JITA4DS: Disaggregated Execution of Data Science Pipelines Between the Edge and the Data Centre

This paper targets the execution of data science (DS) pipelines supported by data processing, transmission and sharing across several resources executing greedy processes. Current data science pipelines environments provide various infrastructure services with computing resources such as general-pur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Web Engineering 2021-11, Vol.21 (1), p.1
Hauptverfasser: Vargas-Solar, Genoveva, Hassan, Md Sahil, Akoglu, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 1
container_title Journal of Web Engineering
container_volume 21
creator Vargas-Solar, Genoveva
Hassan, Md Sahil
Akoglu, Ali
description This paper targets the execution of data science (DS) pipelines supported by data processing, transmission and sharing across several resources executing greedy processes. Current data science pipelines environments provide various infrastructure services with computing resources such as general-purpose processors (GPP), Graphics Processing Units (GPUs), Field Programmable Gate Arrays (FPGAs) and Tensor Processing Unit (TPU) coupled with platform and software services to design, run and maintain DS pipelines. These one-fits-all solutions impose the complete externalization of data pipeline tasks. However, some tasks can be executed in the edge, and the backend can provide just in time resources to ensure ad-hoc and elastic execution environments.This paper introduces an innovative composable “Just in Time Architecture” for configuring DCs for Data Science Pipelines (JITA-4DS) and associated resource management techniques. JITA-4DS is a cross-layer management system that is aware of both the application characteristics and the underlying infrastructures to break the barriers between applications, middleware/operating system, and hardware layers. Vertical integration of these layers is needed for building a customizable Virtual Data Center (VDC) to meet the dynamically changing data science pipelines’ requirements such as performance, availability, and energy consumption. Accordingly, the paper shows an experimental simulation devoted to run data science workloads and determine the best strategies for scheduling the allocation of resources implemented by JITA-4DS.
doi_str_mv 10.13052/jwe1540-9589.2111
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_journals_3055533137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3055533137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-38bfe18ba3cf0de2e27f9df322cc58854ffb8f7f46f477b6d9cc959080f021bd3</originalsourceid><addsrcrecordid>eNo9kE1PwkAQhjdGExH9A5428eShuB9d2vWGgIIh0QQ8b7bb2VKCLe4uov_e0hJPM_POk8nkQeiWkgHlRLCHzQGoiEkkRSoHjFJ6hnpNEEdCJsPztu-Wl-jK-w0hccKY6CH1Ol-N4snyEU9Kr4vCQaED5Hj6A2YfyrrCtcUTHTRemhIqA_i93MG2rMDjJwgHgAqHNeBpXgDWVd4OLT-GKji4RhdWbz3cnGoffTxPV-NZtHh7mY9Hi8hwIkPE08wCTTPNjSU5MGCJlbnljBkj0lTE1mapTWw8tHGSZMNcGiOFJCmxhNEs5310391d663aufJTu19V61LNRgt1zAjnVEhOv2nD3nXsztVfe_BBbeq9q5r3VONSiIbkSUOxjjKu9t6B_T9LiWqlq5N0dfSqjtL5H4GAc4k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3055533137</pqid></control><display><type>article</type><title>JITA4DS: Disaggregated Execution of Data Science Pipelines Between the Edge and the Data Centre</title><source>ProQuest One Community College</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Vargas-Solar, Genoveva ; Hassan, Md Sahil ; Akoglu, Ali</creator><creatorcontrib>Vargas-Solar, Genoveva ; Hassan, Md Sahil ; Akoglu, Ali</creatorcontrib><description>This paper targets the execution of data science (DS) pipelines supported by data processing, transmission and sharing across several resources executing greedy processes. Current data science pipelines environments provide various infrastructure services with computing resources such as general-purpose processors (GPP), Graphics Processing Units (GPUs), Field Programmable Gate Arrays (FPGAs) and Tensor Processing Unit (TPU) coupled with platform and software services to design, run and maintain DS pipelines. These one-fits-all solutions impose the complete externalization of data pipeline tasks. However, some tasks can be executed in the edge, and the backend can provide just in time resources to ensure ad-hoc and elastic execution environments.This paper introduces an innovative composable “Just in Time Architecture” for configuring DCs for Data Science Pipelines (JITA-4DS) and associated resource management techniques. JITA-4DS is a cross-layer management system that is aware of both the application characteristics and the underlying infrastructures to break the barriers between applications, middleware/operating system, and hardware layers. Vertical integration of these layers is needed for building a customizable Virtual Data Center (VDC) to meet the dynamically changing data science pipelines’ requirements such as performance, availability, and energy consumption. Accordingly, the paper shows an experimental simulation devoted to run data science workloads and determine the best strategies for scheduling the allocation of resources implemented by JITA-4DS.</description><identifier>ISSN: 1540-9589</identifier><identifier>EISSN: 1544-5976</identifier><identifier>DOI: 10.13052/jwe1540-9589.2111</identifier><language>eng</language><publisher>Milan: River Publishers</publisher><subject>Algorithms ; Artificial intelligence ; Big Data ; Computer centers ; Computer Science ; Data analysis ; Data centers ; Data processing ; Data science ; Datasets ; Design ; Energy consumption ; Engineers ; Experiments ; Field programmable gate arrays ; Graphics processing units ; Infrastructure ; Just in time ; Machine learning ; Middleware ; Pipelining (computers) ; Resource management ; Resource scheduling ; Software ; Tensors ; Workloads</subject><ispartof>Journal of Web Engineering, 2021-11, Vol.21 (1), p.1</ispartof><rights>2022. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-38bfe18ba3cf0de2e27f9df322cc58854ffb8f7f46f477b6d9cc959080f021bd3</citedby><orcidid>0000-0001-9545-1821</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3055533137?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,885,21388,27924,27925,33744,43805,64385,64389,72469,73128,73129,73131</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03315931$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Vargas-Solar, Genoveva</creatorcontrib><creatorcontrib>Hassan, Md Sahil</creatorcontrib><creatorcontrib>Akoglu, Ali</creatorcontrib><title>JITA4DS: Disaggregated Execution of Data Science Pipelines Between the Edge and the Data Centre</title><title>Journal of Web Engineering</title><description>This paper targets the execution of data science (DS) pipelines supported by data processing, transmission and sharing across several resources executing greedy processes. Current data science pipelines environments provide various infrastructure services with computing resources such as general-purpose processors (GPP), Graphics Processing Units (GPUs), Field Programmable Gate Arrays (FPGAs) and Tensor Processing Unit (TPU) coupled with platform and software services to design, run and maintain DS pipelines. These one-fits-all solutions impose the complete externalization of data pipeline tasks. However, some tasks can be executed in the edge, and the backend can provide just in time resources to ensure ad-hoc and elastic execution environments.This paper introduces an innovative composable “Just in Time Architecture” for configuring DCs for Data Science Pipelines (JITA-4DS) and associated resource management techniques. JITA-4DS is a cross-layer management system that is aware of both the application characteristics and the underlying infrastructures to break the barriers between applications, middleware/operating system, and hardware layers. Vertical integration of these layers is needed for building a customizable Virtual Data Center (VDC) to meet the dynamically changing data science pipelines’ requirements such as performance, availability, and energy consumption. Accordingly, the paper shows an experimental simulation devoted to run data science workloads and determine the best strategies for scheduling the allocation of resources implemented by JITA-4DS.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Big Data</subject><subject>Computer centers</subject><subject>Computer Science</subject><subject>Data analysis</subject><subject>Data centers</subject><subject>Data processing</subject><subject>Data science</subject><subject>Datasets</subject><subject>Design</subject><subject>Energy consumption</subject><subject>Engineers</subject><subject>Experiments</subject><subject>Field programmable gate arrays</subject><subject>Graphics processing units</subject><subject>Infrastructure</subject><subject>Just in time</subject><subject>Machine learning</subject><subject>Middleware</subject><subject>Pipelining (computers)</subject><subject>Resource management</subject><subject>Resource scheduling</subject><subject>Software</subject><subject>Tensors</subject><subject>Workloads</subject><issn>1540-9589</issn><issn>1544-5976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNo9kE1PwkAQhjdGExH9A5428eShuB9d2vWGgIIh0QQ8b7bb2VKCLe4uov_e0hJPM_POk8nkQeiWkgHlRLCHzQGoiEkkRSoHjFJ6hnpNEEdCJsPztu-Wl-jK-w0hccKY6CH1Ol-N4snyEU9Kr4vCQaED5Hj6A2YfyrrCtcUTHTRemhIqA_i93MG2rMDjJwgHgAqHNeBpXgDWVd4OLT-GKji4RhdWbz3cnGoffTxPV-NZtHh7mY9Hi8hwIkPE08wCTTPNjSU5MGCJlbnljBkj0lTE1mapTWw8tHGSZMNcGiOFJCmxhNEs5310391d663aufJTu19V61LNRgt1zAjnVEhOv2nD3nXsztVfe_BBbeq9q5r3VONSiIbkSUOxjjKu9t6B_T9LiWqlq5N0dfSqjtL5H4GAc4k</recordid><startdate>20211128</startdate><enddate>20211128</enddate><creator>Vargas-Solar, Genoveva</creator><creator>Hassan, Md Sahil</creator><creator>Akoglu, Ali</creator><general>River Publishers</general><general>Rinton Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9545-1821</orcidid></search><sort><creationdate>20211128</creationdate><title>JITA4DS: Disaggregated Execution of Data Science Pipelines Between the Edge and the Data Centre</title><author>Vargas-Solar, Genoveva ; Hassan, Md Sahil ; Akoglu, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-38bfe18ba3cf0de2e27f9df322cc58854ffb8f7f46f477b6d9cc959080f021bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Big Data</topic><topic>Computer centers</topic><topic>Computer Science</topic><topic>Data analysis</topic><topic>Data centers</topic><topic>Data processing</topic><topic>Data science</topic><topic>Datasets</topic><topic>Design</topic><topic>Energy consumption</topic><topic>Engineers</topic><topic>Experiments</topic><topic>Field programmable gate arrays</topic><topic>Graphics processing units</topic><topic>Infrastructure</topic><topic>Just in time</topic><topic>Machine learning</topic><topic>Middleware</topic><topic>Pipelining (computers)</topic><topic>Resource management</topic><topic>Resource scheduling</topic><topic>Software</topic><topic>Tensors</topic><topic>Workloads</topic><toplevel>online_resources</toplevel><creatorcontrib>Vargas-Solar, Genoveva</creatorcontrib><creatorcontrib>Hassan, Md Sahil</creatorcontrib><creatorcontrib>Akoglu, Ali</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of Web Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vargas-Solar, Genoveva</au><au>Hassan, Md Sahil</au><au>Akoglu, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>JITA4DS: Disaggregated Execution of Data Science Pipelines Between the Edge and the Data Centre</atitle><jtitle>Journal of Web Engineering</jtitle><date>2021-11-28</date><risdate>2021</risdate><volume>21</volume><issue>1</issue><spage>1</spage><pages>1-</pages><issn>1540-9589</issn><eissn>1544-5976</eissn><abstract>This paper targets the execution of data science (DS) pipelines supported by data processing, transmission and sharing across several resources executing greedy processes. Current data science pipelines environments provide various infrastructure services with computing resources such as general-purpose processors (GPP), Graphics Processing Units (GPUs), Field Programmable Gate Arrays (FPGAs) and Tensor Processing Unit (TPU) coupled with platform and software services to design, run and maintain DS pipelines. These one-fits-all solutions impose the complete externalization of data pipeline tasks. However, some tasks can be executed in the edge, and the backend can provide just in time resources to ensure ad-hoc and elastic execution environments.This paper introduces an innovative composable “Just in Time Architecture” for configuring DCs for Data Science Pipelines (JITA-4DS) and associated resource management techniques. JITA-4DS is a cross-layer management system that is aware of both the application characteristics and the underlying infrastructures to break the barriers between applications, middleware/operating system, and hardware layers. Vertical integration of these layers is needed for building a customizable Virtual Data Center (VDC) to meet the dynamically changing data science pipelines’ requirements such as performance, availability, and energy consumption. Accordingly, the paper shows an experimental simulation devoted to run data science workloads and determine the best strategies for scheduling the allocation of resources implemented by JITA-4DS.</abstract><cop>Milan</cop><pub>River Publishers</pub><doi>10.13052/jwe1540-9589.2111</doi><orcidid>https://orcid.org/0000-0001-9545-1821</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1540-9589
ispartof Journal of Web Engineering, 2021-11, Vol.21 (1), p.1
issn 1540-9589
1544-5976
language eng
recordid cdi_proquest_journals_3055533137
source ProQuest One Community College; ProQuest Central UK/Ireland; ProQuest Central
subjects Algorithms
Artificial intelligence
Big Data
Computer centers
Computer Science
Data analysis
Data centers
Data processing
Data science
Datasets
Design
Energy consumption
Engineers
Experiments
Field programmable gate arrays
Graphics processing units
Infrastructure
Just in time
Machine learning
Middleware
Pipelining (computers)
Resource management
Resource scheduling
Software
Tensors
Workloads
title JITA4DS: Disaggregated Execution of Data Science Pipelines Between the Edge and the Data Centre
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T23%3A56%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=JITA4DS:%20Disaggregated%20Execution%20of%20Data%20Science%20Pipelines%20Between%20the%20Edge%20and%20the%20Data%20Centre&rft.jtitle=Journal%20of%20Web%20Engineering&rft.au=Vargas-Solar,%20Genoveva&rft.date=2021-11-28&rft.volume=21&rft.issue=1&rft.spage=1&rft.pages=1-&rft.issn=1540-9589&rft.eissn=1544-5976&rft_id=info:doi/10.13052/jwe1540-9589.2111&rft_dat=%3Cproquest_hal_p%3E3055533137%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3055533137&rft_id=info:pmid/&rfr_iscdi=true