JITA4DS: Disaggregated Execution of Data Science Pipelines Between the Edge and the Data Centre
This paper targets the execution of data science (DS) pipelines supported by data processing, transmission and sharing across several resources executing greedy processes. Current data science pipelines environments provide various infrastructure services with computing resources such as general-pur...
Gespeichert in:
Veröffentlicht in: | Journal of Web Engineering 2021-11, Vol.21 (1), p.1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Journal of Web Engineering |
container_volume | 21 |
creator | Vargas-Solar, Genoveva Hassan, Md Sahil Akoglu, Ali |
description | This paper targets the execution of data science (DS) pipelines supported by data processing, transmission and sharing across several resources executing greedy processes. Current data science pipelines environments provide various infrastructure services with computing resources such as general-purpose processors (GPP), Graphics Processing Units (GPUs), Field Programmable Gate Arrays (FPGAs) and Tensor Processing Unit (TPU) coupled with platform and software services to design, run and maintain DS pipelines. These one-fits-all solutions impose the complete externalization of data pipeline tasks. However, some tasks can be executed in the edge, and the backend can provide just in time resources to ensure ad-hoc and elastic execution environments.This paper introduces an innovative composable “Just in Time Architecture” for configuring DCs for Data Science Pipelines (JITA-4DS) and associated resource management techniques. JITA-4DS is a cross-layer management system that is aware of both the application characteristics and the underlying infrastructures to break the barriers between applications, middleware/operating system, and hardware layers. Vertical integration of these layers is needed for building a customizable Virtual Data Center (VDC) to meet the dynamically changing data science pipelines’ requirements such as performance, availability, and energy consumption. Accordingly, the paper shows an experimental simulation devoted to run data science workloads and determine the best strategies for scheduling the allocation of resources implemented by JITA-4DS. |
doi_str_mv | 10.13052/jwe1540-9589.2111 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_journals_3055533137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3055533137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-38bfe18ba3cf0de2e27f9df322cc58854ffb8f7f46f477b6d9cc959080f021bd3</originalsourceid><addsrcrecordid>eNo9kE1PwkAQhjdGExH9A5428eShuB9d2vWGgIIh0QQ8b7bb2VKCLe4uov_e0hJPM_POk8nkQeiWkgHlRLCHzQGoiEkkRSoHjFJ6hnpNEEdCJsPztu-Wl-jK-w0hccKY6CH1Ol-N4snyEU9Kr4vCQaED5Hj6A2YfyrrCtcUTHTRemhIqA_i93MG2rMDjJwgHgAqHNeBpXgDWVd4OLT-GKji4RhdWbz3cnGoffTxPV-NZtHh7mY9Hi8hwIkPE08wCTTPNjSU5MGCJlbnljBkj0lTE1mapTWw8tHGSZMNcGiOFJCmxhNEs5310391d663aufJTu19V61LNRgt1zAjnVEhOv2nD3nXsztVfe_BBbeq9q5r3VONSiIbkSUOxjjKu9t6B_T9LiWqlq5N0dfSqjtL5H4GAc4k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3055533137</pqid></control><display><type>article</type><title>JITA4DS: Disaggregated Execution of Data Science Pipelines Between the Edge and the Data Centre</title><source>ProQuest One Community College</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Vargas-Solar, Genoveva ; Hassan, Md Sahil ; Akoglu, Ali</creator><creatorcontrib>Vargas-Solar, Genoveva ; Hassan, Md Sahil ; Akoglu, Ali</creatorcontrib><description>This paper targets the execution of data science (DS) pipelines supported by data processing, transmission and sharing across several resources executing greedy processes. Current data science pipelines environments provide various infrastructure services with computing resources such as general-purpose processors (GPP), Graphics Processing Units (GPUs), Field Programmable Gate Arrays (FPGAs) and Tensor Processing Unit (TPU) coupled with platform and software services to design, run and maintain DS pipelines. These one-fits-all solutions impose the complete externalization of data pipeline tasks. However, some tasks can be executed in the edge, and the backend can provide just in time resources to ensure ad-hoc and elastic execution environments.This paper introduces an innovative composable “Just in Time Architecture” for configuring DCs for Data Science Pipelines (JITA-4DS) and associated resource management techniques. JITA-4DS is a cross-layer management system that is aware of both the application characteristics and the underlying infrastructures to break the barriers between applications, middleware/operating system, and hardware layers. Vertical integration of these layers is needed for building a customizable Virtual Data Center (VDC) to meet the dynamically changing data science pipelines’ requirements such as performance, availability, and energy consumption. Accordingly, the paper shows an experimental simulation devoted to run data science workloads and determine the best strategies for scheduling the allocation of resources implemented by JITA-4DS.</description><identifier>ISSN: 1540-9589</identifier><identifier>EISSN: 1544-5976</identifier><identifier>DOI: 10.13052/jwe1540-9589.2111</identifier><language>eng</language><publisher>Milan: River Publishers</publisher><subject>Algorithms ; Artificial intelligence ; Big Data ; Computer centers ; Computer Science ; Data analysis ; Data centers ; Data processing ; Data science ; Datasets ; Design ; Energy consumption ; Engineers ; Experiments ; Field programmable gate arrays ; Graphics processing units ; Infrastructure ; Just in time ; Machine learning ; Middleware ; Pipelining (computers) ; Resource management ; Resource scheduling ; Software ; Tensors ; Workloads</subject><ispartof>Journal of Web Engineering, 2021-11, Vol.21 (1), p.1</ispartof><rights>2022. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-38bfe18ba3cf0de2e27f9df322cc58854ffb8f7f46f477b6d9cc959080f021bd3</citedby><orcidid>0000-0001-9545-1821</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3055533137?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,885,21388,27924,27925,33744,43805,64385,64389,72469,73128,73129,73131</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03315931$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Vargas-Solar, Genoveva</creatorcontrib><creatorcontrib>Hassan, Md Sahil</creatorcontrib><creatorcontrib>Akoglu, Ali</creatorcontrib><title>JITA4DS: Disaggregated Execution of Data Science Pipelines Between the Edge and the Data Centre</title><title>Journal of Web Engineering</title><description>This paper targets the execution of data science (DS) pipelines supported by data processing, transmission and sharing across several resources executing greedy processes. Current data science pipelines environments provide various infrastructure services with computing resources such as general-purpose processors (GPP), Graphics Processing Units (GPUs), Field Programmable Gate Arrays (FPGAs) and Tensor Processing Unit (TPU) coupled with platform and software services to design, run and maintain DS pipelines. These one-fits-all solutions impose the complete externalization of data pipeline tasks. However, some tasks can be executed in the edge, and the backend can provide just in time resources to ensure ad-hoc and elastic execution environments.This paper introduces an innovative composable “Just in Time Architecture” for configuring DCs for Data Science Pipelines (JITA-4DS) and associated resource management techniques. JITA-4DS is a cross-layer management system that is aware of both the application characteristics and the underlying infrastructures to break the barriers between applications, middleware/operating system, and hardware layers. Vertical integration of these layers is needed for building a customizable Virtual Data Center (VDC) to meet the dynamically changing data science pipelines’ requirements such as performance, availability, and energy consumption. Accordingly, the paper shows an experimental simulation devoted to run data science workloads and determine the best strategies for scheduling the allocation of resources implemented by JITA-4DS.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Big Data</subject><subject>Computer centers</subject><subject>Computer Science</subject><subject>Data analysis</subject><subject>Data centers</subject><subject>Data processing</subject><subject>Data science</subject><subject>Datasets</subject><subject>Design</subject><subject>Energy consumption</subject><subject>Engineers</subject><subject>Experiments</subject><subject>Field programmable gate arrays</subject><subject>Graphics processing units</subject><subject>Infrastructure</subject><subject>Just in time</subject><subject>Machine learning</subject><subject>Middleware</subject><subject>Pipelining (computers)</subject><subject>Resource management</subject><subject>Resource scheduling</subject><subject>Software</subject><subject>Tensors</subject><subject>Workloads</subject><issn>1540-9589</issn><issn>1544-5976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNo9kE1PwkAQhjdGExH9A5428eShuB9d2vWGgIIh0QQ8b7bb2VKCLe4uov_e0hJPM_POk8nkQeiWkgHlRLCHzQGoiEkkRSoHjFJ6hnpNEEdCJsPztu-Wl-jK-w0hccKY6CH1Ol-N4snyEU9Kr4vCQaED5Hj6A2YfyrrCtcUTHTRemhIqA_i93MG2rMDjJwgHgAqHNeBpXgDWVd4OLT-GKji4RhdWbz3cnGoffTxPV-NZtHh7mY9Hi8hwIkPE08wCTTPNjSU5MGCJlbnljBkj0lTE1mapTWw8tHGSZMNcGiOFJCmxhNEs5310391d663aufJTu19V61LNRgt1zAjnVEhOv2nD3nXsztVfe_BBbeq9q5r3VONSiIbkSUOxjjKu9t6B_T9LiWqlq5N0dfSqjtL5H4GAc4k</recordid><startdate>20211128</startdate><enddate>20211128</enddate><creator>Vargas-Solar, Genoveva</creator><creator>Hassan, Md Sahil</creator><creator>Akoglu, Ali</creator><general>River Publishers</general><general>Rinton Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9545-1821</orcidid></search><sort><creationdate>20211128</creationdate><title>JITA4DS: Disaggregated Execution of Data Science Pipelines Between the Edge and the Data Centre</title><author>Vargas-Solar, Genoveva ; Hassan, Md Sahil ; Akoglu, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-38bfe18ba3cf0de2e27f9df322cc58854ffb8f7f46f477b6d9cc959080f021bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Big Data</topic><topic>Computer centers</topic><topic>Computer Science</topic><topic>Data analysis</topic><topic>Data centers</topic><topic>Data processing</topic><topic>Data science</topic><topic>Datasets</topic><topic>Design</topic><topic>Energy consumption</topic><topic>Engineers</topic><topic>Experiments</topic><topic>Field programmable gate arrays</topic><topic>Graphics processing units</topic><topic>Infrastructure</topic><topic>Just in time</topic><topic>Machine learning</topic><topic>Middleware</topic><topic>Pipelining (computers)</topic><topic>Resource management</topic><topic>Resource scheduling</topic><topic>Software</topic><topic>Tensors</topic><topic>Workloads</topic><toplevel>online_resources</toplevel><creatorcontrib>Vargas-Solar, Genoveva</creatorcontrib><creatorcontrib>Hassan, Md Sahil</creatorcontrib><creatorcontrib>Akoglu, Ali</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of Web Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vargas-Solar, Genoveva</au><au>Hassan, Md Sahil</au><au>Akoglu, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>JITA4DS: Disaggregated Execution of Data Science Pipelines Between the Edge and the Data Centre</atitle><jtitle>Journal of Web Engineering</jtitle><date>2021-11-28</date><risdate>2021</risdate><volume>21</volume><issue>1</issue><spage>1</spage><pages>1-</pages><issn>1540-9589</issn><eissn>1544-5976</eissn><abstract>This paper targets the execution of data science (DS) pipelines supported by data processing, transmission and sharing across several resources executing greedy processes. Current data science pipelines environments provide various infrastructure services with computing resources such as general-purpose processors (GPP), Graphics Processing Units (GPUs), Field Programmable Gate Arrays (FPGAs) and Tensor Processing Unit (TPU) coupled with platform and software services to design, run and maintain DS pipelines. These one-fits-all solutions impose the complete externalization of data pipeline tasks. However, some tasks can be executed in the edge, and the backend can provide just in time resources to ensure ad-hoc and elastic execution environments.This paper introduces an innovative composable “Just in Time Architecture” for configuring DCs for Data Science Pipelines (JITA-4DS) and associated resource management techniques. JITA-4DS is a cross-layer management system that is aware of both the application characteristics and the underlying infrastructures to break the barriers between applications, middleware/operating system, and hardware layers. Vertical integration of these layers is needed for building a customizable Virtual Data Center (VDC) to meet the dynamically changing data science pipelines’ requirements such as performance, availability, and energy consumption. Accordingly, the paper shows an experimental simulation devoted to run data science workloads and determine the best strategies for scheduling the allocation of resources implemented by JITA-4DS.</abstract><cop>Milan</cop><pub>River Publishers</pub><doi>10.13052/jwe1540-9589.2111</doi><orcidid>https://orcid.org/0000-0001-9545-1821</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1540-9589 |
ispartof | Journal of Web Engineering, 2021-11, Vol.21 (1), p.1 |
issn | 1540-9589 1544-5976 |
language | eng |
recordid | cdi_proquest_journals_3055533137 |
source | ProQuest One Community College; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Algorithms Artificial intelligence Big Data Computer centers Computer Science Data analysis Data centers Data processing Data science Datasets Design Energy consumption Engineers Experiments Field programmable gate arrays Graphics processing units Infrastructure Just in time Machine learning Middleware Pipelining (computers) Resource management Resource scheduling Software Tensors Workloads |
title | JITA4DS: Disaggregated Execution of Data Science Pipelines Between the Edge and the Data Centre |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T23%3A56%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=JITA4DS:%20Disaggregated%20Execution%20of%20Data%20Science%20Pipelines%20Between%20the%20Edge%20and%20the%20Data%20Centre&rft.jtitle=Journal%20of%20Web%20Engineering&rft.au=Vargas-Solar,%20Genoveva&rft.date=2021-11-28&rft.volume=21&rft.issue=1&rft.spage=1&rft.pages=1-&rft.issn=1540-9589&rft.eissn=1544-5976&rft_id=info:doi/10.13052/jwe1540-9589.2111&rft_dat=%3Cproquest_hal_p%3E3055533137%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3055533137&rft_id=info:pmid/&rfr_iscdi=true |