News Article Based Industry Risk Index Prediction for Industry-Specific Evaluation

The existing industry evaluation method utilizes the method of collecting the structured information such as the financial information of the companies included in the relevant industry and deriving the industrial evaluation index through the statistical analysis model. This method takes a long time...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of web engineering 2021-01, Vol.20 (3), p.795
Hauptverfasser: Kim, Kyungwon, Yoon, Kyoungro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 795
container_title Journal of web engineering
container_volume 20
creator Kim, Kyungwon
Yoon, Kyoungro
description The existing industry evaluation method utilizes the method of collecting the structured information such as the financial information of the companies included in the relevant industry and deriving the industrial evaluation index through the statistical analysis model. This method takes a long time to calculate the structured data and cause the time delay problem. In this paper, to solve this time delay problem, we derive monthly industry-specific interest and likability as a time series data type, which is a new industry evaluation indicator based on unstructured data. In addition, we propose a method to predict the industrial risk index, which is used as an important factor in industrial evaluation, based on derived industry-specific interest and likability time series data.
doi_str_mv 10.13052/jwe1540-9589.20311
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3055533048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3055533048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c207t-ebb859c802bad85a22bbd165cec819376ad0665be55ee1bedbc8dec8438bd9533</originalsourceid><addsrcrecordid>eNo9kMlOwzAQhi0EEqXwBFwscQ54ySTOsVQFKlWACpwtLxPJpTTFTih9e9JFnGb5P81IHyHXnN1yyUDcLTbIIWdZBaq6FUxyfkIG_SbPoCqL031_SM_JRUoLxvJSCBiQ-TNuEh3FNrgl0nuT0NPpynepjVs6D-lzN-EvfY3og2tDs6J1E_-R7G2NLtTB0cmPWXZmB1ySs9osE14d65B8PEzex0_Z7OVxOh7NMidY2WZorYLKKSas8QqMENZ6XoBDp3gly8J4VhRgEQCRW_TWKd9nuVTWVyDlkNwc7q5j891havWi6eKqf6l7J9ATLFc9JQ-Ui01KEWu9juHLxK3mTO_l6aM8vdOj9_LkH1EMY98</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3055533048</pqid></control><display><type>article</type><title>News Article Based Industry Risk Index Prediction for Industry-Specific Evaluation</title><source>ProQuest Central</source><creator>Kim, Kyungwon ; Yoon, Kyoungro</creator><creatorcontrib>Kim, Kyungwon ; Yoon, Kyoungro</creatorcontrib><description>The existing industry evaluation method utilizes the method of collecting the structured information such as the financial information of the companies included in the relevant industry and deriving the industrial evaluation index through the statistical analysis model. This method takes a long time to calculate the structured data and cause the time delay problem. In this paper, to solve this time delay problem, we derive monthly industry-specific interest and likability as a time series data type, which is a new industry evaluation indicator based on unstructured data. In addition, we propose a method to predict the industrial risk index, which is used as an important factor in industrial evaluation, based on derived industry-specific interest and likability time series data.</description><identifier>ISSN: 1540-9589</identifier><identifier>EISSN: 1544-5976</identifier><identifier>DOI: 10.13052/jwe1540-9589.20311</identifier><language>eng</language><publisher>Milan: River Publishers</publisher><subject>Algorithms ; Classification ; Dictionaries ; Financial analysis ; Keywords ; Semantics ; Statistical analysis ; Structured data ; Time lag ; Time series ; Unstructured data</subject><ispartof>Journal of web engineering, 2021-01, Vol.20 (3), p.795</ispartof><rights>2021. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c207t-ebb859c802bad85a22bbd165cec819376ad0665be55ee1bedbc8dec8438bd9533</citedby><orcidid>0000-0001-9537-9225 ; 0000-0002-1153-4038</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3055533048?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,43781</link.rule.ids></links><search><creatorcontrib>Kim, Kyungwon</creatorcontrib><creatorcontrib>Yoon, Kyoungro</creatorcontrib><title>News Article Based Industry Risk Index Prediction for Industry-Specific Evaluation</title><title>Journal of web engineering</title><description>The existing industry evaluation method utilizes the method of collecting the structured information such as the financial information of the companies included in the relevant industry and deriving the industrial evaluation index through the statistical analysis model. This method takes a long time to calculate the structured data and cause the time delay problem. In this paper, to solve this time delay problem, we derive monthly industry-specific interest and likability as a time series data type, which is a new industry evaluation indicator based on unstructured data. In addition, we propose a method to predict the industrial risk index, which is used as an important factor in industrial evaluation, based on derived industry-specific interest and likability time series data.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Dictionaries</subject><subject>Financial analysis</subject><subject>Keywords</subject><subject>Semantics</subject><subject>Statistical analysis</subject><subject>Structured data</subject><subject>Time lag</subject><subject>Time series</subject><subject>Unstructured data</subject><issn>1540-9589</issn><issn>1544-5976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNo9kMlOwzAQhi0EEqXwBFwscQ54ySTOsVQFKlWACpwtLxPJpTTFTih9e9JFnGb5P81IHyHXnN1yyUDcLTbIIWdZBaq6FUxyfkIG_SbPoCqL031_SM_JRUoLxvJSCBiQ-TNuEh3FNrgl0nuT0NPpynepjVs6D-lzN-EvfY3og2tDs6J1E_-R7G2NLtTB0cmPWXZmB1ySs9osE14d65B8PEzex0_Z7OVxOh7NMidY2WZorYLKKSas8QqMENZ6XoBDp3gly8J4VhRgEQCRW_TWKd9nuVTWVyDlkNwc7q5j891havWi6eKqf6l7J9ATLFc9JQ-Ui01KEWu9juHLxK3mTO_l6aM8vdOj9_LkH1EMY98</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Kim, Kyungwon</creator><creator>Yoon, Kyoungro</creator><general>River Publishers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-9537-9225</orcidid><orcidid>https://orcid.org/0000-0002-1153-4038</orcidid></search><sort><creationdate>20210101</creationdate><title>News Article Based Industry Risk Index Prediction for Industry-Specific Evaluation</title><author>Kim, Kyungwon ; Yoon, Kyoungro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c207t-ebb859c802bad85a22bbd165cec819376ad0665be55ee1bedbc8dec8438bd9533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Dictionaries</topic><topic>Financial analysis</topic><topic>Keywords</topic><topic>Semantics</topic><topic>Statistical analysis</topic><topic>Structured data</topic><topic>Time lag</topic><topic>Time series</topic><topic>Unstructured data</topic><toplevel>online_resources</toplevel><creatorcontrib>Kim, Kyungwon</creatorcontrib><creatorcontrib>Yoon, Kyoungro</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of web engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Kyungwon</au><au>Yoon, Kyoungro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>News Article Based Industry Risk Index Prediction for Industry-Specific Evaluation</atitle><jtitle>Journal of web engineering</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>20</volume><issue>3</issue><spage>795</spage><pages>795-</pages><issn>1540-9589</issn><eissn>1544-5976</eissn><abstract>The existing industry evaluation method utilizes the method of collecting the structured information such as the financial information of the companies included in the relevant industry and deriving the industrial evaluation index through the statistical analysis model. This method takes a long time to calculate the structured data and cause the time delay problem. In this paper, to solve this time delay problem, we derive monthly industry-specific interest and likability as a time series data type, which is a new industry evaluation indicator based on unstructured data. In addition, we propose a method to predict the industrial risk index, which is used as an important factor in industrial evaluation, based on derived industry-specific interest and likability time series data.</abstract><cop>Milan</cop><pub>River Publishers</pub><doi>10.13052/jwe1540-9589.20311</doi><orcidid>https://orcid.org/0000-0001-9537-9225</orcidid><orcidid>https://orcid.org/0000-0002-1153-4038</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1540-9589
ispartof Journal of web engineering, 2021-01, Vol.20 (3), p.795
issn 1540-9589
1544-5976
language eng
recordid cdi_proquest_journals_3055533048
source ProQuest Central
subjects Algorithms
Classification
Dictionaries
Financial analysis
Keywords
Semantics
Statistical analysis
Structured data
Time lag
Time series
Unstructured data
title News Article Based Industry Risk Index Prediction for Industry-Specific Evaluation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T06%3A18%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=News%20Article%20Based%20Industry%20Risk%20Index%20Prediction%20for%20Industry-Specific%20Evaluation&rft.jtitle=Journal%20of%20web%20engineering&rft.au=Kim,%20Kyungwon&rft.date=2021-01-01&rft.volume=20&rft.issue=3&rft.spage=795&rft.pages=795-&rft.issn=1540-9589&rft.eissn=1544-5976&rft_id=info:doi/10.13052/jwe1540-9589.20311&rft_dat=%3Cproquest_cross%3E3055533048%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3055533048&rft_id=info:pmid/&rfr_iscdi=true