News Article Based Industry Risk Index Prediction for Industry-Specific Evaluation
The existing industry evaluation method utilizes the method of collecting the structured information such as the financial information of the companies included in the relevant industry and deriving the industrial evaluation index through the statistical analysis model. This method takes a long time...
Gespeichert in:
Veröffentlicht in: | Journal of web engineering 2021-01, Vol.20 (3), p.795 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 795 |
container_title | Journal of web engineering |
container_volume | 20 |
creator | Kim, Kyungwon Yoon, Kyoungro |
description | The existing industry evaluation method utilizes the method of collecting the structured information such as the financial information of the companies included in the relevant industry and deriving the industrial evaluation index through the statistical analysis model. This method takes a long time to calculate the structured data and cause the time delay problem. In this paper, to solve this time delay problem, we derive monthly industry-specific interest and likability as a time series data type, which is a new industry evaluation indicator based on unstructured data. In addition, we propose a method to predict the industrial risk index, which is used as an important factor in industrial evaluation, based on derived industry-specific interest and likability time series data. |
doi_str_mv | 10.13052/jwe1540-9589.20311 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3055533048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3055533048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c207t-ebb859c802bad85a22bbd165cec819376ad0665be55ee1bedbc8dec8438bd9533</originalsourceid><addsrcrecordid>eNo9kMlOwzAQhi0EEqXwBFwscQ54ySTOsVQFKlWACpwtLxPJpTTFTih9e9JFnGb5P81IHyHXnN1yyUDcLTbIIWdZBaq6FUxyfkIG_SbPoCqL031_SM_JRUoLxvJSCBiQ-TNuEh3FNrgl0nuT0NPpynepjVs6D-lzN-EvfY3og2tDs6J1E_-R7G2NLtTB0cmPWXZmB1ySs9osE14d65B8PEzex0_Z7OVxOh7NMidY2WZorYLKKSas8QqMENZ6XoBDp3gly8J4VhRgEQCRW_TWKd9nuVTWVyDlkNwc7q5j891havWi6eKqf6l7J9ATLFc9JQ-Ui01KEWu9juHLxK3mTO_l6aM8vdOj9_LkH1EMY98</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3055533048</pqid></control><display><type>article</type><title>News Article Based Industry Risk Index Prediction for Industry-Specific Evaluation</title><source>ProQuest Central</source><creator>Kim, Kyungwon ; Yoon, Kyoungro</creator><creatorcontrib>Kim, Kyungwon ; Yoon, Kyoungro</creatorcontrib><description>The existing industry evaluation method utilizes the method of collecting the structured information such as the financial information of the companies included in the relevant industry and deriving the industrial evaluation index through the statistical analysis model. This method takes a long time to calculate the structured data and cause the time delay problem. In this paper, to solve this time delay problem, we derive monthly industry-specific interest and likability as a time series data type, which is a new industry evaluation indicator based on unstructured data. In addition, we propose a method to predict the industrial risk index, which is used as an important factor in industrial evaluation, based on derived industry-specific interest and likability time series data.</description><identifier>ISSN: 1540-9589</identifier><identifier>EISSN: 1544-5976</identifier><identifier>DOI: 10.13052/jwe1540-9589.20311</identifier><language>eng</language><publisher>Milan: River Publishers</publisher><subject>Algorithms ; Classification ; Dictionaries ; Financial analysis ; Keywords ; Semantics ; Statistical analysis ; Structured data ; Time lag ; Time series ; Unstructured data</subject><ispartof>Journal of web engineering, 2021-01, Vol.20 (3), p.795</ispartof><rights>2021. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c207t-ebb859c802bad85a22bbd165cec819376ad0665be55ee1bedbc8dec8438bd9533</citedby><orcidid>0000-0001-9537-9225 ; 0000-0002-1153-4038</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3055533048?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,43781</link.rule.ids></links><search><creatorcontrib>Kim, Kyungwon</creatorcontrib><creatorcontrib>Yoon, Kyoungro</creatorcontrib><title>News Article Based Industry Risk Index Prediction for Industry-Specific Evaluation</title><title>Journal of web engineering</title><description>The existing industry evaluation method utilizes the method of collecting the structured information such as the financial information of the companies included in the relevant industry and deriving the industrial evaluation index through the statistical analysis model. This method takes a long time to calculate the structured data and cause the time delay problem. In this paper, to solve this time delay problem, we derive monthly industry-specific interest and likability as a time series data type, which is a new industry evaluation indicator based on unstructured data. In addition, we propose a method to predict the industrial risk index, which is used as an important factor in industrial evaluation, based on derived industry-specific interest and likability time series data.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Dictionaries</subject><subject>Financial analysis</subject><subject>Keywords</subject><subject>Semantics</subject><subject>Statistical analysis</subject><subject>Structured data</subject><subject>Time lag</subject><subject>Time series</subject><subject>Unstructured data</subject><issn>1540-9589</issn><issn>1544-5976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNo9kMlOwzAQhi0EEqXwBFwscQ54ySTOsVQFKlWACpwtLxPJpTTFTih9e9JFnGb5P81IHyHXnN1yyUDcLTbIIWdZBaq6FUxyfkIG_SbPoCqL031_SM_JRUoLxvJSCBiQ-TNuEh3FNrgl0nuT0NPpynepjVs6D-lzN-EvfY3og2tDs6J1E_-R7G2NLtTB0cmPWXZmB1ySs9osE14d65B8PEzex0_Z7OVxOh7NMidY2WZorYLKKSas8QqMENZ6XoBDp3gly8J4VhRgEQCRW_TWKd9nuVTWVyDlkNwc7q5j891havWi6eKqf6l7J9ATLFc9JQ-Ui01KEWu9juHLxK3mTO_l6aM8vdOj9_LkH1EMY98</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Kim, Kyungwon</creator><creator>Yoon, Kyoungro</creator><general>River Publishers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-9537-9225</orcidid><orcidid>https://orcid.org/0000-0002-1153-4038</orcidid></search><sort><creationdate>20210101</creationdate><title>News Article Based Industry Risk Index Prediction for Industry-Specific Evaluation</title><author>Kim, Kyungwon ; Yoon, Kyoungro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c207t-ebb859c802bad85a22bbd165cec819376ad0665be55ee1bedbc8dec8438bd9533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Dictionaries</topic><topic>Financial analysis</topic><topic>Keywords</topic><topic>Semantics</topic><topic>Statistical analysis</topic><topic>Structured data</topic><topic>Time lag</topic><topic>Time series</topic><topic>Unstructured data</topic><toplevel>online_resources</toplevel><creatorcontrib>Kim, Kyungwon</creatorcontrib><creatorcontrib>Yoon, Kyoungro</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of web engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Kyungwon</au><au>Yoon, Kyoungro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>News Article Based Industry Risk Index Prediction for Industry-Specific Evaluation</atitle><jtitle>Journal of web engineering</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>20</volume><issue>3</issue><spage>795</spage><pages>795-</pages><issn>1540-9589</issn><eissn>1544-5976</eissn><abstract>The existing industry evaluation method utilizes the method of collecting the structured information such as the financial information of the companies included in the relevant industry and deriving the industrial evaluation index through the statistical analysis model. This method takes a long time to calculate the structured data and cause the time delay problem. In this paper, to solve this time delay problem, we derive monthly industry-specific interest and likability as a time series data type, which is a new industry evaluation indicator based on unstructured data. In addition, we propose a method to predict the industrial risk index, which is used as an important factor in industrial evaluation, based on derived industry-specific interest and likability time series data.</abstract><cop>Milan</cop><pub>River Publishers</pub><doi>10.13052/jwe1540-9589.20311</doi><orcidid>https://orcid.org/0000-0001-9537-9225</orcidid><orcidid>https://orcid.org/0000-0002-1153-4038</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1540-9589 |
ispartof | Journal of web engineering, 2021-01, Vol.20 (3), p.795 |
issn | 1540-9589 1544-5976 |
language | eng |
recordid | cdi_proquest_journals_3055533048 |
source | ProQuest Central |
subjects | Algorithms Classification Dictionaries Financial analysis Keywords Semantics Statistical analysis Structured data Time lag Time series Unstructured data |
title | News Article Based Industry Risk Index Prediction for Industry-Specific Evaluation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T06%3A18%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=News%20Article%20Based%20Industry%20Risk%20Index%20Prediction%20for%20Industry-Specific%20Evaluation&rft.jtitle=Journal%20of%20web%20engineering&rft.au=Kim,%20Kyungwon&rft.date=2021-01-01&rft.volume=20&rft.issue=3&rft.spage=795&rft.pages=795-&rft.issn=1540-9589&rft.eissn=1544-5976&rft_id=info:doi/10.13052/jwe1540-9589.20311&rft_dat=%3Cproquest_cross%3E3055533048%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3055533048&rft_id=info:pmid/&rfr_iscdi=true |