Observation of spectral lines in the exceptional GRB 221009A

As the brightest gamma-ray burst ever observed, GRB 221009A provided a precious opportunity to explore spectral line features. In this article, we performed a comprehensive spectroscopy analysis of GRB 221009A jointly with GECAM-C and Fermi /GBM data to search for emission and absorption lines. For...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Physics, mechanics & astronomy mechanics & astronomy, 2024-08, Vol.67 (8), p.289511, Article 289511
Hauptverfasser: Zhang, Yan-Qiu, Xiong, Shao-Lin, Mao, Ji-Rong, Zhang, Shuang-Nan, Xue, Wang-Chen, Zheng, Chao, Liu, Jia-Cong, Zhang, Zhen, Wang, Xi-Lu, Ge, Ming-Yu, Yi, Shu-Xu, Song, Li-Ming, An, Zheng-Hua, Cai, Ce, Li, Xin-Qiao, Peng, Wen-Xi, Tan, Wen-Jun, Wang, Chen-Wei, Wen, Xiang-Yang, Wang, Yue, Xiao, Shuo, Zhang, Fan, Zhang, Peng, Zheng, Shi-Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 289511
container_title Science China. Physics, mechanics & astronomy
container_volume 67
creator Zhang, Yan-Qiu
Xiong, Shao-Lin
Mao, Ji-Rong
Zhang, Shuang-Nan
Xue, Wang-Chen
Zheng, Chao
Liu, Jia-Cong
Zhang, Zhen
Wang, Xi-Lu
Ge, Ming-Yu
Yi, Shu-Xu
Song, Li-Ming
An, Zheng-Hua
Cai, Ce
Li, Xin-Qiao
Peng, Wen-Xi
Tan, Wen-Jun
Wang, Chen-Wei
Wen, Xiang-Yang
Wang, Yue
Xiao, Shuo
Zhang, Fan
Zhang, Peng
Zheng, Shi-Jie
description As the brightest gamma-ray burst ever observed, GRB 221009A provided a precious opportunity to explore spectral line features. In this article, we performed a comprehensive spectroscopy analysis of GRB 221009A jointly with GECAM-C and Fermi /GBM data to search for emission and absorption lines. For the first time we investigated the line feature throughout this GRB including the most bright part where many instruments suffered problems, and identified prominent emission lines in multiple time intervals. The central energy of the Gaussian emission line evolves from about 37 to 6 MeV, with a nearly constant ratio (about 10%) between the line width and central energy. Particularly, we find that both the central energy and the energy flux of the emission line evolve with time as a power law decay with power law index of −1 and −2, respectively. We suggest that the observed emission lines most likely origin from the blue-shifted electron positron pair annihilation 511 keV line. We find that a standard high latitude emission scenario cannot fully interpret the observation, thus we propose that the emission line comes from some dense clumps with electron positron pairs traveling together with the jet. In this scenario, we can use the emission line to directly, for the first time, measure the bulk Lorentz factor of the jet (Γ) and reveal its time evolution (i.e., Γ ∼ t −1 ) during the prompt emission. Interestingly, we find that the flux of the annihilation line in the co-moving frame keeps constant. These discoveries of the spectral line features shed new and important lights on the physics of GRB and relativistic jet.
doi_str_mv 10.1007/s11433-023-2381-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3055503794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3055244450</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-aa50290d252c860ca0c544c339f0ffdc1dc156d931eb2acb68e5d3a1a69907473</originalsourceid><addsrcrecordid>eNqFkFFLwzAQx4MoOOY-gG8Fn6OXXNI04MscOoXBQPQ5pGmqHbOtSSf67U2p4JN4HNzB_f53x5-QcwaXDEBdRcYEIgWOlGPBKByRGStyTZnm6jj1uRJUoShOySLGHaRADUKJGbneltGHDzs0XZt1dRZ774Zg99m-aX3MmjYbXn3mP53vRyQN1o83Gefprl6ekZPa7qNf_NQ5eb67fVrd0812_bBabqhDIQZqrQSuoeKSuyIHZ8FJIRyirqGuK8dSyrzSyHzJrSvzwssKLbO51qCEwjm5mPb2oXs_-DiYXXcI6ZloEKSUgEqL_yguhEjknLCJcqGLMfja9KF5s-HLMDCjm2Zy0yQ3zeimGTV80sTEti8-_G7-W_QNb1RzYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3055244450</pqid></control><display><type>article</type><title>Observation of spectral lines in the exceptional GRB 221009A</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Zhang, Yan-Qiu ; Xiong, Shao-Lin ; Mao, Ji-Rong ; Zhang, Shuang-Nan ; Xue, Wang-Chen ; Zheng, Chao ; Liu, Jia-Cong ; Zhang, Zhen ; Wang, Xi-Lu ; Ge, Ming-Yu ; Yi, Shu-Xu ; Song, Li-Ming ; An, Zheng-Hua ; Cai, Ce ; Li, Xin-Qiao ; Peng, Wen-Xi ; Tan, Wen-Jun ; Wang, Chen-Wei ; Wen, Xiang-Yang ; Wang, Yue ; Xiao, Shuo ; Zhang, Fan ; Zhang, Peng ; Zheng, Shi-Jie</creator><creatorcontrib>Zhang, Yan-Qiu ; Xiong, Shao-Lin ; Mao, Ji-Rong ; Zhang, Shuang-Nan ; Xue, Wang-Chen ; Zheng, Chao ; Liu, Jia-Cong ; Zhang, Zhen ; Wang, Xi-Lu ; Ge, Ming-Yu ; Yi, Shu-Xu ; Song, Li-Ming ; An, Zheng-Hua ; Cai, Ce ; Li, Xin-Qiao ; Peng, Wen-Xi ; Tan, Wen-Jun ; Wang, Chen-Wei ; Wen, Xiang-Yang ; Wang, Yue ; Xiao, Shuo ; Zhang, Fan ; Zhang, Peng ; Zheng, Shi-Jie</creatorcontrib><description>As the brightest gamma-ray burst ever observed, GRB 221009A provided a precious opportunity to explore spectral line features. In this article, we performed a comprehensive spectroscopy analysis of GRB 221009A jointly with GECAM-C and Fermi /GBM data to search for emission and absorption lines. For the first time we investigated the line feature throughout this GRB including the most bright part where many instruments suffered problems, and identified prominent emission lines in multiple time intervals. The central energy of the Gaussian emission line evolves from about 37 to 6 MeV, with a nearly constant ratio (about 10%) between the line width and central energy. Particularly, we find that both the central energy and the energy flux of the emission line evolve with time as a power law decay with power law index of −1 and −2, respectively. We suggest that the observed emission lines most likely origin from the blue-shifted electron positron pair annihilation 511 keV line. We find that a standard high latitude emission scenario cannot fully interpret the observation, thus we propose that the emission line comes from some dense clumps with electron positron pairs traveling together with the jet. In this scenario, we can use the emission line to directly, for the first time, measure the bulk Lorentz factor of the jet (Γ) and reveal its time evolution (i.e., Γ ∼ t −1 ) during the prompt emission. Interestingly, we find that the flux of the annihilation line in the co-moving frame keeps constant. These discoveries of the spectral line features shed new and important lights on the physics of GRB and relativistic jet.</description><identifier>ISSN: 1674-7348</identifier><identifier>EISSN: 1869-1927</identifier><identifier>DOI: 10.1007/s11433-023-2381-0</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Astronomy ; Classical and Continuum Physics ; Clumps ; Emission ; Energy ; Gamma ray bursts ; Gamma rays ; Gravitational waves ; Laboratories ; Line spectra ; Lorentz factor ; Observations and Techniques ; Physics ; Physics and Astronomy ; Power law ; Records &amp; achievements ; Science ; Spectrum analysis ; Time measurement</subject><ispartof>Science China. Physics, mechanics &amp; astronomy, 2024-08, Vol.67 (8), p.289511, Article 289511</ispartof><rights>Science China Press 2024</rights><rights>Science China Press 2024.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-aa50290d252c860ca0c544c339f0ffdc1dc156d931eb2acb68e5d3a1a69907473</citedby><cites>FETCH-LOGICAL-c344t-aa50290d252c860ca0c544c339f0ffdc1dc156d931eb2acb68e5d3a1a69907473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11433-023-2381-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11433-023-2381-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Zhang, Yan-Qiu</creatorcontrib><creatorcontrib>Xiong, Shao-Lin</creatorcontrib><creatorcontrib>Mao, Ji-Rong</creatorcontrib><creatorcontrib>Zhang, Shuang-Nan</creatorcontrib><creatorcontrib>Xue, Wang-Chen</creatorcontrib><creatorcontrib>Zheng, Chao</creatorcontrib><creatorcontrib>Liu, Jia-Cong</creatorcontrib><creatorcontrib>Zhang, Zhen</creatorcontrib><creatorcontrib>Wang, Xi-Lu</creatorcontrib><creatorcontrib>Ge, Ming-Yu</creatorcontrib><creatorcontrib>Yi, Shu-Xu</creatorcontrib><creatorcontrib>Song, Li-Ming</creatorcontrib><creatorcontrib>An, Zheng-Hua</creatorcontrib><creatorcontrib>Cai, Ce</creatorcontrib><creatorcontrib>Li, Xin-Qiao</creatorcontrib><creatorcontrib>Peng, Wen-Xi</creatorcontrib><creatorcontrib>Tan, Wen-Jun</creatorcontrib><creatorcontrib>Wang, Chen-Wei</creatorcontrib><creatorcontrib>Wen, Xiang-Yang</creatorcontrib><creatorcontrib>Wang, Yue</creatorcontrib><creatorcontrib>Xiao, Shuo</creatorcontrib><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Zheng, Shi-Jie</creatorcontrib><title>Observation of spectral lines in the exceptional GRB 221009A</title><title>Science China. Physics, mechanics &amp; astronomy</title><addtitle>Sci. China Phys. Mech. Astron</addtitle><description>As the brightest gamma-ray burst ever observed, GRB 221009A provided a precious opportunity to explore spectral line features. In this article, we performed a comprehensive spectroscopy analysis of GRB 221009A jointly with GECAM-C and Fermi /GBM data to search for emission and absorption lines. For the first time we investigated the line feature throughout this GRB including the most bright part where many instruments suffered problems, and identified prominent emission lines in multiple time intervals. The central energy of the Gaussian emission line evolves from about 37 to 6 MeV, with a nearly constant ratio (about 10%) between the line width and central energy. Particularly, we find that both the central energy and the energy flux of the emission line evolve with time as a power law decay with power law index of −1 and −2, respectively. We suggest that the observed emission lines most likely origin from the blue-shifted electron positron pair annihilation 511 keV line. We find that a standard high latitude emission scenario cannot fully interpret the observation, thus we propose that the emission line comes from some dense clumps with electron positron pairs traveling together with the jet. In this scenario, we can use the emission line to directly, for the first time, measure the bulk Lorentz factor of the jet (Γ) and reveal its time evolution (i.e., Γ ∼ t −1 ) during the prompt emission. Interestingly, we find that the flux of the annihilation line in the co-moving frame keeps constant. These discoveries of the spectral line features shed new and important lights on the physics of GRB and relativistic jet.</description><subject>Astronomy</subject><subject>Classical and Continuum Physics</subject><subject>Clumps</subject><subject>Emission</subject><subject>Energy</subject><subject>Gamma ray bursts</subject><subject>Gamma rays</subject><subject>Gravitational waves</subject><subject>Laboratories</subject><subject>Line spectra</subject><subject>Lorentz factor</subject><subject>Observations and Techniques</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Power law</subject><subject>Records &amp; achievements</subject><subject>Science</subject><subject>Spectrum analysis</subject><subject>Time measurement</subject><issn>1674-7348</issn><issn>1869-1927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkFFLwzAQx4MoOOY-gG8Fn6OXXNI04MscOoXBQPQ5pGmqHbOtSSf67U2p4JN4HNzB_f53x5-QcwaXDEBdRcYEIgWOlGPBKByRGStyTZnm6jj1uRJUoShOySLGHaRADUKJGbneltGHDzs0XZt1dRZ774Zg99m-aX3MmjYbXn3mP53vRyQN1o83Gefprl6ekZPa7qNf_NQ5eb67fVrd0812_bBabqhDIQZqrQSuoeKSuyIHZ8FJIRyirqGuK8dSyrzSyHzJrSvzwssKLbO51qCEwjm5mPb2oXs_-DiYXXcI6ZloEKSUgEqL_yguhEjknLCJcqGLMfja9KF5s-HLMDCjm2Zy0yQ3zeimGTV80sTEti8-_G7-W_QNb1RzYw</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Zhang, Yan-Qiu</creator><creator>Xiong, Shao-Lin</creator><creator>Mao, Ji-Rong</creator><creator>Zhang, Shuang-Nan</creator><creator>Xue, Wang-Chen</creator><creator>Zheng, Chao</creator><creator>Liu, Jia-Cong</creator><creator>Zhang, Zhen</creator><creator>Wang, Xi-Lu</creator><creator>Ge, Ming-Yu</creator><creator>Yi, Shu-Xu</creator><creator>Song, Li-Ming</creator><creator>An, Zheng-Hua</creator><creator>Cai, Ce</creator><creator>Li, Xin-Qiao</creator><creator>Peng, Wen-Xi</creator><creator>Tan, Wen-Jun</creator><creator>Wang, Chen-Wei</creator><creator>Wen, Xiang-Yang</creator><creator>Wang, Yue</creator><creator>Xiao, Shuo</creator><creator>Zhang, Fan</creator><creator>Zhang, Peng</creator><creator>Zheng, Shi-Jie</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240801</creationdate><title>Observation of spectral lines in the exceptional GRB 221009A</title><author>Zhang, Yan-Qiu ; Xiong, Shao-Lin ; Mao, Ji-Rong ; Zhang, Shuang-Nan ; Xue, Wang-Chen ; Zheng, Chao ; Liu, Jia-Cong ; Zhang, Zhen ; Wang, Xi-Lu ; Ge, Ming-Yu ; Yi, Shu-Xu ; Song, Li-Ming ; An, Zheng-Hua ; Cai, Ce ; Li, Xin-Qiao ; Peng, Wen-Xi ; Tan, Wen-Jun ; Wang, Chen-Wei ; Wen, Xiang-Yang ; Wang, Yue ; Xiao, Shuo ; Zhang, Fan ; Zhang, Peng ; Zheng, Shi-Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-aa50290d252c860ca0c544c339f0ffdc1dc156d931eb2acb68e5d3a1a69907473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Astronomy</topic><topic>Classical and Continuum Physics</topic><topic>Clumps</topic><topic>Emission</topic><topic>Energy</topic><topic>Gamma ray bursts</topic><topic>Gamma rays</topic><topic>Gravitational waves</topic><topic>Laboratories</topic><topic>Line spectra</topic><topic>Lorentz factor</topic><topic>Observations and Techniques</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Power law</topic><topic>Records &amp; achievements</topic><topic>Science</topic><topic>Spectrum analysis</topic><topic>Time measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yan-Qiu</creatorcontrib><creatorcontrib>Xiong, Shao-Lin</creatorcontrib><creatorcontrib>Mao, Ji-Rong</creatorcontrib><creatorcontrib>Zhang, Shuang-Nan</creatorcontrib><creatorcontrib>Xue, Wang-Chen</creatorcontrib><creatorcontrib>Zheng, Chao</creatorcontrib><creatorcontrib>Liu, Jia-Cong</creatorcontrib><creatorcontrib>Zhang, Zhen</creatorcontrib><creatorcontrib>Wang, Xi-Lu</creatorcontrib><creatorcontrib>Ge, Ming-Yu</creatorcontrib><creatorcontrib>Yi, Shu-Xu</creatorcontrib><creatorcontrib>Song, Li-Ming</creatorcontrib><creatorcontrib>An, Zheng-Hua</creatorcontrib><creatorcontrib>Cai, Ce</creatorcontrib><creatorcontrib>Li, Xin-Qiao</creatorcontrib><creatorcontrib>Peng, Wen-Xi</creatorcontrib><creatorcontrib>Tan, Wen-Jun</creatorcontrib><creatorcontrib>Wang, Chen-Wei</creatorcontrib><creatorcontrib>Wen, Xiang-Yang</creatorcontrib><creatorcontrib>Wang, Yue</creatorcontrib><creatorcontrib>Xiao, Shuo</creatorcontrib><creatorcontrib>Zhang, Fan</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Zheng, Shi-Jie</creatorcontrib><collection>CrossRef</collection><jtitle>Science China. Physics, mechanics &amp; astronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yan-Qiu</au><au>Xiong, Shao-Lin</au><au>Mao, Ji-Rong</au><au>Zhang, Shuang-Nan</au><au>Xue, Wang-Chen</au><au>Zheng, Chao</au><au>Liu, Jia-Cong</au><au>Zhang, Zhen</au><au>Wang, Xi-Lu</au><au>Ge, Ming-Yu</au><au>Yi, Shu-Xu</au><au>Song, Li-Ming</au><au>An, Zheng-Hua</au><au>Cai, Ce</au><au>Li, Xin-Qiao</au><au>Peng, Wen-Xi</au><au>Tan, Wen-Jun</au><au>Wang, Chen-Wei</au><au>Wen, Xiang-Yang</au><au>Wang, Yue</au><au>Xiao, Shuo</au><au>Zhang, Fan</au><au>Zhang, Peng</au><au>Zheng, Shi-Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observation of spectral lines in the exceptional GRB 221009A</atitle><jtitle>Science China. Physics, mechanics &amp; astronomy</jtitle><stitle>Sci. China Phys. Mech. Astron</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>67</volume><issue>8</issue><spage>289511</spage><pages>289511-</pages><artnum>289511</artnum><issn>1674-7348</issn><eissn>1869-1927</eissn><abstract>As the brightest gamma-ray burst ever observed, GRB 221009A provided a precious opportunity to explore spectral line features. In this article, we performed a comprehensive spectroscopy analysis of GRB 221009A jointly with GECAM-C and Fermi /GBM data to search for emission and absorption lines. For the first time we investigated the line feature throughout this GRB including the most bright part where many instruments suffered problems, and identified prominent emission lines in multiple time intervals. The central energy of the Gaussian emission line evolves from about 37 to 6 MeV, with a nearly constant ratio (about 10%) between the line width and central energy. Particularly, we find that both the central energy and the energy flux of the emission line evolve with time as a power law decay with power law index of −1 and −2, respectively. We suggest that the observed emission lines most likely origin from the blue-shifted electron positron pair annihilation 511 keV line. We find that a standard high latitude emission scenario cannot fully interpret the observation, thus we propose that the emission line comes from some dense clumps with electron positron pairs traveling together with the jet. In this scenario, we can use the emission line to directly, for the first time, measure the bulk Lorentz factor of the jet (Γ) and reveal its time evolution (i.e., Γ ∼ t −1 ) during the prompt emission. Interestingly, we find that the flux of the annihilation line in the co-moving frame keeps constant. These discoveries of the spectral line features shed new and important lights on the physics of GRB and relativistic jet.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11433-023-2381-0</doi></addata></record>
fulltext fulltext
identifier ISSN: 1674-7348
ispartof Science China. Physics, mechanics & astronomy, 2024-08, Vol.67 (8), p.289511, Article 289511
issn 1674-7348
1869-1927
language eng
recordid cdi_proquest_journals_3055503794
source SpringerLink Journals; Alma/SFX Local Collection
subjects Astronomy
Classical and Continuum Physics
Clumps
Emission
Energy
Gamma ray bursts
Gamma rays
Gravitational waves
Laboratories
Line spectra
Lorentz factor
Observations and Techniques
Physics
Physics and Astronomy
Power law
Records & achievements
Science
Spectrum analysis
Time measurement
title Observation of spectral lines in the exceptional GRB 221009A
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T08%3A36%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observation%20of%20spectral%20lines%20in%20the%20exceptional%20GRB%20221009A&rft.jtitle=Science%20China.%20Physics,%20mechanics%20&%20astronomy&rft.au=Zhang,%20Yan-Qiu&rft.date=2024-08-01&rft.volume=67&rft.issue=8&rft.spage=289511&rft.pages=289511-&rft.artnum=289511&rft.issn=1674-7348&rft.eissn=1869-1927&rft_id=info:doi/10.1007/s11433-023-2381-0&rft_dat=%3Cproquest_cross%3E3055244450%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3055244450&rft_id=info:pmid/&rfr_iscdi=true