AI-based analysis and linking of technical and organisational data using graph models as a basis for decision-making in systems engineering
The increased complexity of development projects surpass the capabilities of existing methods. While Model Based Systems Engineering pursues technically holistic approaches to realize complex products, aspects of organization as well as risk management, are still considered separately. The identific...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2634 |
---|---|
container_issue | |
container_start_page | 2625 |
container_title | |
container_volume | 4 |
creator | Katzung, Sebastian Cinkaya, Hüseyin Kizgin, Umut Volkan Savinov, Alexander Baschin, Julian Vietor, Thomas |
description | The increased complexity of development projects surpass the capabilities of existing methods. While Model Based Systems Engineering pursues technically holistic approaches to realize complex products, aspects of organization as well as risk management, are still considered separately. The identification and management of risks are crucial in order to take suitable measures to minimize adverse effects on the project or the organization. To counter this, a new graph-based method and tool using AI, tailored to the needs of complex development projects and organizations is introduced here. |
doi_str_mv | 10.1017/pds.2024.265 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3055414747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3055414747</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1735-a2bfffb61f4852ef91b25a45a8e337e518a29fbb4cce036fbf1d37f9aca931773</originalsourceid><addsrcrecordid>eNpNkMtqwzAQRUVpoaHNrh8g6LZO9bCseBlCH4FANy10Z8ay5Cj1qxpnkW_oT1dOuigMzGXmzoG5hNxxtuCM68ehwoVgIl2ITF2QmdBSJEroz8t_-prMEfeMMZFxlXM2Iz-rTVIC2opCB80RPUZR0cZ3X76rae_oaM2u8waa06IPNXQeYfR99NMKRqAHnKx1gGFH276yTWTEopEbca4PtLLGY7xIWjhhfUfxiKNtkdqu9p21IY5vyZWDBu38r9-Qj-en9_Vrsn172axX28RwLVUConTOlRl36VIJ63JeCgWpgqWVUlvFlyByV5apMZbJzJWOV1K7HAzkkmstb8j9mTuE_vtgcSz2_SHEd7CQTKmUpzqdXA9nlwk9YrCuGIJvIRwLzoop8SImXkyJFzFx-QsZe3aV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3055414747</pqid></control><display><type>conference_proceeding</type><title>AI-based analysis and linking of technical and organisational data using graph models as a basis for decision-making in systems engineering</title><source>Cambridge Journals Open Access</source><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Katzung, Sebastian ; Cinkaya, Hüseyin ; Kizgin, Umut Volkan ; Savinov, Alexander ; Baschin, Julian ; Vietor, Thomas</creator><creatorcontrib>Katzung, Sebastian ; Cinkaya, Hüseyin ; Kizgin, Umut Volkan ; Savinov, Alexander ; Baschin, Julian ; Vietor, Thomas</creatorcontrib><description>The increased complexity of development projects surpass the capabilities of existing methods. While Model Based Systems Engineering pursues technically holistic approaches to realize complex products, aspects of organization as well as risk management, are still considered separately. The identification and management of risks are crucial in order to take suitable measures to minimize adverse effects on the project or the organization. To counter this, a new graph-based method and tool using AI, tailored to the needs of complex development projects and organizations is introduced here.</description><identifier>ISSN: 2732-527X</identifier><identifier>EISSN: 2732-527X</identifier><identifier>DOI: 10.1017/pds.2024.265</identifier><language>eng</language><publisher>Cambridge: Cambridge University Press</publisher><subject>Artificial intelligence ; Collaboration ; Decision making ; Design ; Interdisciplinary aspects ; Product development ; Product life cycle ; Project management ; Software development ; Software engineering ; Software quality ; Software upgrading ; Systems design ; Systems engineering</subject><ispartof>Proceedings of the Design Society, 2024, Vol.4, p.2625-2634</ispartof><rights>The Author(s), 2024. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3055414747?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,780,784,789,790,21386,23928,23929,25138,27922,27923,33742,43803,64383,64387,72239</link.rule.ids></links><search><creatorcontrib>Katzung, Sebastian</creatorcontrib><creatorcontrib>Cinkaya, Hüseyin</creatorcontrib><creatorcontrib>Kizgin, Umut Volkan</creatorcontrib><creatorcontrib>Savinov, Alexander</creatorcontrib><creatorcontrib>Baschin, Julian</creatorcontrib><creatorcontrib>Vietor, Thomas</creatorcontrib><title>AI-based analysis and linking of technical and organisational data using graph models as a basis for decision-making in systems engineering</title><title>Proceedings of the Design Society</title><description>The increased complexity of development projects surpass the capabilities of existing methods. While Model Based Systems Engineering pursues technically holistic approaches to realize complex products, aspects of organization as well as risk management, are still considered separately. The identification and management of risks are crucial in order to take suitable measures to minimize adverse effects on the project or the organization. To counter this, a new graph-based method and tool using AI, tailored to the needs of complex development projects and organizations is introduced here.</description><subject>Artificial intelligence</subject><subject>Collaboration</subject><subject>Decision making</subject><subject>Design</subject><subject>Interdisciplinary aspects</subject><subject>Product development</subject><subject>Product life cycle</subject><subject>Project management</subject><subject>Software development</subject><subject>Software engineering</subject><subject>Software quality</subject><subject>Software upgrading</subject><subject>Systems design</subject><subject>Systems engineering</subject><issn>2732-527X</issn><issn>2732-527X</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNkMtqwzAQRUVpoaHNrh8g6LZO9bCseBlCH4FANy10Z8ay5Cj1qxpnkW_oT1dOuigMzGXmzoG5hNxxtuCM68ehwoVgIl2ITF2QmdBSJEroz8t_-prMEfeMMZFxlXM2Iz-rTVIC2opCB80RPUZR0cZ3X76rae_oaM2u8waa06IPNXQeYfR99NMKRqAHnKx1gGFH276yTWTEopEbca4PtLLGY7xIWjhhfUfxiKNtkdqu9p21IY5vyZWDBu38r9-Qj-en9_Vrsn172axX28RwLVUConTOlRl36VIJ63JeCgWpgqWVUlvFlyByV5apMZbJzJWOV1K7HAzkkmstb8j9mTuE_vtgcSz2_SHEd7CQTKmUpzqdXA9nlwk9YrCuGIJvIRwLzoop8SImXkyJFzFx-QsZe3aV</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Katzung, Sebastian</creator><creator>Cinkaya, Hüseyin</creator><creator>Kizgin, Umut Volkan</creator><creator>Savinov, Alexander</creator><creator>Baschin, Julian</creator><creator>Vietor, Thomas</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20240501</creationdate><title>AI-based analysis and linking of technical and organisational data using graph models as a basis for decision-making in systems engineering</title><author>Katzung, Sebastian ; Cinkaya, Hüseyin ; Kizgin, Umut Volkan ; Savinov, Alexander ; Baschin, Julian ; Vietor, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1735-a2bfffb61f4852ef91b25a45a8e337e518a29fbb4cce036fbf1d37f9aca931773</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Collaboration</topic><topic>Decision making</topic><topic>Design</topic><topic>Interdisciplinary aspects</topic><topic>Product development</topic><topic>Product life cycle</topic><topic>Project management</topic><topic>Software development</topic><topic>Software engineering</topic><topic>Software quality</topic><topic>Software upgrading</topic><topic>Systems design</topic><topic>Systems engineering</topic><toplevel>online_resources</toplevel><creatorcontrib>Katzung, Sebastian</creatorcontrib><creatorcontrib>Cinkaya, Hüseyin</creatorcontrib><creatorcontrib>Kizgin, Umut Volkan</creatorcontrib><creatorcontrib>Savinov, Alexander</creatorcontrib><creatorcontrib>Baschin, Julian</creatorcontrib><creatorcontrib>Vietor, Thomas</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Katzung, Sebastian</au><au>Cinkaya, Hüseyin</au><au>Kizgin, Umut Volkan</au><au>Savinov, Alexander</au><au>Baschin, Julian</au><au>Vietor, Thomas</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>AI-based analysis and linking of technical and organisational data using graph models as a basis for decision-making in systems engineering</atitle><btitle>Proceedings of the Design Society</btitle><date>2024-05-01</date><risdate>2024</risdate><volume>4</volume><spage>2625</spage><epage>2634</epage><pages>2625-2634</pages><issn>2732-527X</issn><eissn>2732-527X</eissn><abstract>The increased complexity of development projects surpass the capabilities of existing methods. While Model Based Systems Engineering pursues technically holistic approaches to realize complex products, aspects of organization as well as risk management, are still considered separately. The identification and management of risks are crucial in order to take suitable measures to minimize adverse effects on the project or the organization. To counter this, a new graph-based method and tool using AI, tailored to the needs of complex development projects and organizations is introduced here.</abstract><cop>Cambridge</cop><pub>Cambridge University Press</pub><doi>10.1017/pds.2024.265</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2732-527X |
ispartof | Proceedings of the Design Society, 2024, Vol.4, p.2625-2634 |
issn | 2732-527X 2732-527X |
language | eng |
recordid | cdi_proquest_journals_3055414747 |
source | Cambridge Journals Open Access; ProQuest Central UK/Ireland; Alma/SFX Local Collection; ProQuest Central |
subjects | Artificial intelligence Collaboration Decision making Design Interdisciplinary aspects Product development Product life cycle Project management Software development Software engineering Software quality Software upgrading Systems design Systems engineering |
title | AI-based analysis and linking of technical and organisational data using graph models as a basis for decision-making in systems engineering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T04%3A18%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=AI-based%20analysis%20and%20linking%20of%20technical%20and%20organisational%20data%20using%20graph%20models%20as%20a%20basis%20for%20decision-making%20in%20systems%20engineering&rft.btitle=Proceedings%20of%20the%20Design%20Society&rft.au=Katzung,%20Sebastian&rft.date=2024-05-01&rft.volume=4&rft.spage=2625&rft.epage=2634&rft.pages=2625-2634&rft.issn=2732-527X&rft.eissn=2732-527X&rft_id=info:doi/10.1017/pds.2024.265&rft_dat=%3Cproquest_cross%3E3055414747%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3055414747&rft_id=info:pmid/&rfr_iscdi=true |