AI-based analysis and linking of technical and organisational data using graph models as a basis for decision-making in systems engineering

The increased complexity of development projects surpass the capabilities of existing methods. While Model Based Systems Engineering pursues technically holistic approaches to realize complex products, aspects of organization as well as risk management, are still considered separately. The identific...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Katzung, Sebastian, Cinkaya, Hüseyin, Kizgin, Umut Volkan, Savinov, Alexander, Baschin, Julian, Vietor, Thomas
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2634
container_issue
container_start_page 2625
container_title
container_volume 4
creator Katzung, Sebastian
Cinkaya, Hüseyin
Kizgin, Umut Volkan
Savinov, Alexander
Baschin, Julian
Vietor, Thomas
description The increased complexity of development projects surpass the capabilities of existing methods. While Model Based Systems Engineering pursues technically holistic approaches to realize complex products, aspects of organization as well as risk management, are still considered separately. The identification and management of risks are crucial in order to take suitable measures to minimize adverse effects on the project or the organization. To counter this, a new graph-based method and tool using AI, tailored to the needs of complex development projects and organizations is introduced here.
doi_str_mv 10.1017/pds.2024.265
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3055414747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3055414747</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1735-a2bfffb61f4852ef91b25a45a8e337e518a29fbb4cce036fbf1d37f9aca931773</originalsourceid><addsrcrecordid>eNpNkMtqwzAQRUVpoaHNrh8g6LZO9bCseBlCH4FANy10Z8ay5Cj1qxpnkW_oT1dOuigMzGXmzoG5hNxxtuCM68ehwoVgIl2ITF2QmdBSJEroz8t_-prMEfeMMZFxlXM2Iz-rTVIC2opCB80RPUZR0cZ3X76rae_oaM2u8waa06IPNXQeYfR99NMKRqAHnKx1gGFH276yTWTEopEbca4PtLLGY7xIWjhhfUfxiKNtkdqu9p21IY5vyZWDBu38r9-Qj-en9_Vrsn172axX28RwLVUConTOlRl36VIJ63JeCgWpgqWVUlvFlyByV5apMZbJzJWOV1K7HAzkkmstb8j9mTuE_vtgcSz2_SHEd7CQTKmUpzqdXA9nlwk9YrCuGIJvIRwLzoop8SImXkyJFzFx-QsZe3aV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>3055414747</pqid></control><display><type>conference_proceeding</type><title>AI-based analysis and linking of technical and organisational data using graph models as a basis for decision-making in systems engineering</title><source>Cambridge Journals Open Access</source><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Katzung, Sebastian ; Cinkaya, Hüseyin ; Kizgin, Umut Volkan ; Savinov, Alexander ; Baschin, Julian ; Vietor, Thomas</creator><creatorcontrib>Katzung, Sebastian ; Cinkaya, Hüseyin ; Kizgin, Umut Volkan ; Savinov, Alexander ; Baschin, Julian ; Vietor, Thomas</creatorcontrib><description>The increased complexity of development projects surpass the capabilities of existing methods. While Model Based Systems Engineering pursues technically holistic approaches to realize complex products, aspects of organization as well as risk management, are still considered separately. The identification and management of risks are crucial in order to take suitable measures to minimize adverse effects on the project or the organization. To counter this, a new graph-based method and tool using AI, tailored to the needs of complex development projects and organizations is introduced here.</description><identifier>ISSN: 2732-527X</identifier><identifier>EISSN: 2732-527X</identifier><identifier>DOI: 10.1017/pds.2024.265</identifier><language>eng</language><publisher>Cambridge: Cambridge University Press</publisher><subject>Artificial intelligence ; Collaboration ; Decision making ; Design ; Interdisciplinary aspects ; Product development ; Product life cycle ; Project management ; Software development ; Software engineering ; Software quality ; Software upgrading ; Systems design ; Systems engineering</subject><ispartof>Proceedings of the Design Society, 2024, Vol.4, p.2625-2634</ispartof><rights>The Author(s), 2024. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3055414747?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,780,784,789,790,21386,23928,23929,25138,27922,27923,33742,43803,64383,64387,72239</link.rule.ids></links><search><creatorcontrib>Katzung, Sebastian</creatorcontrib><creatorcontrib>Cinkaya, Hüseyin</creatorcontrib><creatorcontrib>Kizgin, Umut Volkan</creatorcontrib><creatorcontrib>Savinov, Alexander</creatorcontrib><creatorcontrib>Baschin, Julian</creatorcontrib><creatorcontrib>Vietor, Thomas</creatorcontrib><title>AI-based analysis and linking of technical and organisational data using graph models as a basis for decision-making in systems engineering</title><title>Proceedings of the Design Society</title><description>The increased complexity of development projects surpass the capabilities of existing methods. While Model Based Systems Engineering pursues technically holistic approaches to realize complex products, aspects of organization as well as risk management, are still considered separately. The identification and management of risks are crucial in order to take suitable measures to minimize adverse effects on the project or the organization. To counter this, a new graph-based method and tool using AI, tailored to the needs of complex development projects and organizations is introduced here.</description><subject>Artificial intelligence</subject><subject>Collaboration</subject><subject>Decision making</subject><subject>Design</subject><subject>Interdisciplinary aspects</subject><subject>Product development</subject><subject>Product life cycle</subject><subject>Project management</subject><subject>Software development</subject><subject>Software engineering</subject><subject>Software quality</subject><subject>Software upgrading</subject><subject>Systems design</subject><subject>Systems engineering</subject><issn>2732-527X</issn><issn>2732-527X</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNkMtqwzAQRUVpoaHNrh8g6LZO9bCseBlCH4FANy10Z8ay5Cj1qxpnkW_oT1dOuigMzGXmzoG5hNxxtuCM68ehwoVgIl2ITF2QmdBSJEroz8t_-prMEfeMMZFxlXM2Iz-rTVIC2opCB80RPUZR0cZ3X76rae_oaM2u8waa06IPNXQeYfR99NMKRqAHnKx1gGFH276yTWTEopEbca4PtLLGY7xIWjhhfUfxiKNtkdqu9p21IY5vyZWDBu38r9-Qj-en9_Vrsn172axX28RwLVUConTOlRl36VIJ63JeCgWpgqWVUlvFlyByV5apMZbJzJWOV1K7HAzkkmstb8j9mTuE_vtgcSz2_SHEd7CQTKmUpzqdXA9nlwk9YrCuGIJvIRwLzoop8SImXkyJFzFx-QsZe3aV</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Katzung, Sebastian</creator><creator>Cinkaya, Hüseyin</creator><creator>Kizgin, Umut Volkan</creator><creator>Savinov, Alexander</creator><creator>Baschin, Julian</creator><creator>Vietor, Thomas</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20240501</creationdate><title>AI-based analysis and linking of technical and organisational data using graph models as a basis for decision-making in systems engineering</title><author>Katzung, Sebastian ; Cinkaya, Hüseyin ; Kizgin, Umut Volkan ; Savinov, Alexander ; Baschin, Julian ; Vietor, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1735-a2bfffb61f4852ef91b25a45a8e337e518a29fbb4cce036fbf1d37f9aca931773</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Collaboration</topic><topic>Decision making</topic><topic>Design</topic><topic>Interdisciplinary aspects</topic><topic>Product development</topic><topic>Product life cycle</topic><topic>Project management</topic><topic>Software development</topic><topic>Software engineering</topic><topic>Software quality</topic><topic>Software upgrading</topic><topic>Systems design</topic><topic>Systems engineering</topic><toplevel>online_resources</toplevel><creatorcontrib>Katzung, Sebastian</creatorcontrib><creatorcontrib>Cinkaya, Hüseyin</creatorcontrib><creatorcontrib>Kizgin, Umut Volkan</creatorcontrib><creatorcontrib>Savinov, Alexander</creatorcontrib><creatorcontrib>Baschin, Julian</creatorcontrib><creatorcontrib>Vietor, Thomas</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Katzung, Sebastian</au><au>Cinkaya, Hüseyin</au><au>Kizgin, Umut Volkan</au><au>Savinov, Alexander</au><au>Baschin, Julian</au><au>Vietor, Thomas</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>AI-based analysis and linking of technical and organisational data using graph models as a basis for decision-making in systems engineering</atitle><btitle>Proceedings of the Design Society</btitle><date>2024-05-01</date><risdate>2024</risdate><volume>4</volume><spage>2625</spage><epage>2634</epage><pages>2625-2634</pages><issn>2732-527X</issn><eissn>2732-527X</eissn><abstract>The increased complexity of development projects surpass the capabilities of existing methods. While Model Based Systems Engineering pursues technically holistic approaches to realize complex products, aspects of organization as well as risk management, are still considered separately. The identification and management of risks are crucial in order to take suitable measures to minimize adverse effects on the project or the organization. To counter this, a new graph-based method and tool using AI, tailored to the needs of complex development projects and organizations is introduced here.</abstract><cop>Cambridge</cop><pub>Cambridge University Press</pub><doi>10.1017/pds.2024.265</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2732-527X
ispartof Proceedings of the Design Society, 2024, Vol.4, p.2625-2634
issn 2732-527X
2732-527X
language eng
recordid cdi_proquest_journals_3055414747
source Cambridge Journals Open Access; ProQuest Central UK/Ireland; Alma/SFX Local Collection; ProQuest Central
subjects Artificial intelligence
Collaboration
Decision making
Design
Interdisciplinary aspects
Product development
Product life cycle
Project management
Software development
Software engineering
Software quality
Software upgrading
Systems design
Systems engineering
title AI-based analysis and linking of technical and organisational data using graph models as a basis for decision-making in systems engineering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T04%3A18%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=AI-based%20analysis%20and%20linking%20of%20technical%20and%20organisational%20data%20using%20graph%20models%20as%20a%20basis%20for%20decision-making%20in%20systems%20engineering&rft.btitle=Proceedings%20of%20the%20Design%20Society&rft.au=Katzung,%20Sebastian&rft.date=2024-05-01&rft.volume=4&rft.spage=2625&rft.epage=2634&rft.pages=2625-2634&rft.issn=2732-527X&rft.eissn=2732-527X&rft_id=info:doi/10.1017/pds.2024.265&rft_dat=%3Cproquest_cross%3E3055414747%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3055414747&rft_id=info:pmid/&rfr_iscdi=true