An efficient end-to-end EKF-SLAM architecture based on LiDAR, GNSS, and IMU data sensor fusion for autonomous ground vehicles

The autonomous ground vehicle’s successful navigation with a high level of performance is dependent on accurate state estimation, which may help in providing excellent decision-making, planning, and control tasks. Outside factors like air bias and multipath effects have an impact on the GPS data, ob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2024-05, Vol.83 (18), p.56183-56206
Hauptverfasser: MAILKA, Hamza, Abouzahir, Mohamed, Ramzi, Mustapha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 56206
container_issue 18
container_start_page 56183
container_title Multimedia tools and applications
container_volume 83
creator MAILKA, Hamza
Abouzahir, Mohamed
Ramzi, Mustapha
description The autonomous ground vehicle’s successful navigation with a high level of performance is dependent on accurate state estimation, which may help in providing excellent decision-making, planning, and control tasks. Outside factors like air bias and multipath effects have an impact on the GPS data, obtaining accurate pose estimation remains challenging. To obtain a highly precise pose estimation, the authors propose using an end-to-end simultaneous localization and mapping architecture based on scan matching and an extended Kalman filter to perform a successful prediction using lidar, GNSS and IMU data sensor fusion. In terms of pose estimation efficiency, the obtained results from EKF are compared to the UKF filter in different sequences on the Kitti dataset to more thoroughly evaluate our designed approach. The EKF filter has a good improvement, with approximately 0.29, 0.31, 0.24, 0.34, and 0.27 of the mean RMSE error of the trajectories 09_30_drive_0018, 09_30_drive_0020, 09_30_drive_0027, 10_03_drive_0033, and 10_03_drive_0034, respectively. The proposed approach was evaluated not only on KITTI dataset but also using our data recording platform called KONA Platform.
doi_str_mv 10.1007/s11042-023-17595-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3055248137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3055248137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f1eb8f251d1d3628f3b5e4ab9678c19f2283e2cb883f575f2085390894c531173</originalsourceid><addsrcrecordid>eNp9kMFOAjEURSdGExH9AVdN3FLtaynTWRIEJIImIuum02lhCEyxnZG48N8tYqIrV-8uzr0vOUlyDeQWCEnvAgDpUkwow5DyjOP9SdICnjKcphRO_-Tz5CKENSHQ47TbSj77FTLWlro0VY1MVeDa4XjQ8HGE59P-DCmvV2VtdN14g3IVTIFchablff-lg8ZP83kHqchPZgtUqFqhYKrgPLJNKCNnY1RN7Sq3dU1AS--aCL-bVak3JlwmZ1Ztgrn6ue1kMRq-Dh7w9Hk8GfSnWDPIamzB5MJSDgUUrEeFZTk3XZVnvVRoyCylghmqcyGY5Sm3lAjOMiKyruYMIGXt5Oa4u_PurTGhlmvX-Cq-lIzwKEIAO1D0SGnvQvDGyp0vt8p_SCDyoFkeNcuoWX5rlvtYYsdSiHC1NP53-p_WF4zLfsU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3055248137</pqid></control><display><type>article</type><title>An efficient end-to-end EKF-SLAM architecture based on LiDAR, GNSS, and IMU data sensor fusion for autonomous ground vehicles</title><source>Springer Nature - Complete Springer Journals</source><creator>MAILKA, Hamza ; Abouzahir, Mohamed ; Ramzi, Mustapha</creator><creatorcontrib>MAILKA, Hamza ; Abouzahir, Mohamed ; Ramzi, Mustapha</creatorcontrib><description>The autonomous ground vehicle’s successful navigation with a high level of performance is dependent on accurate state estimation, which may help in providing excellent decision-making, planning, and control tasks. Outside factors like air bias and multipath effects have an impact on the GPS data, obtaining accurate pose estimation remains challenging. To obtain a highly precise pose estimation, the authors propose using an end-to-end simultaneous localization and mapping architecture based on scan matching and an extended Kalman filter to perform a successful prediction using lidar, GNSS and IMU data sensor fusion. In terms of pose estimation efficiency, the obtained results from EKF are compared to the UKF filter in different sequences on the Kitti dataset to more thoroughly evaluate our designed approach. The EKF filter has a good improvement, with approximately 0.29, 0.31, 0.24, 0.34, and 0.27 of the mean RMSE error of the trajectories 09_30_drive_0018, 09_30_drive_0020, 09_30_drive_0027, 10_03_drive_0033, and 10_03_drive_0034, respectively. The proposed approach was evaluated not only on KITTI dataset but also using our data recording platform called KONA Platform.</description><identifier>ISSN: 1573-7721</identifier><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-023-17595-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Autonomous vehicles ; Computer Communication Networks ; Computer Science ; Control tasks ; Data recording ; Data Structures and Information Theory ; Datasets ; Decision making ; Efficiency ; Embedded systems ; Extended Kalman filter ; Global navigation satellite system ; Global positioning systems ; GPS ; Lidar ; Localization ; Mapping ; Multimedia ; Multimedia Information Systems ; Multisensor fusion ; Navigation systems ; Optimization ; Pose estimation ; Root-mean-square errors ; Sensors ; Simultaneous localization and mapping ; Spatial data ; Special Purpose and Application-Based Systems ; State estimation ; Track 7: Connected and Autonomous Vehicles ; Unmanned ground vehicles</subject><ispartof>Multimedia tools and applications, 2024-05, Vol.83 (18), p.56183-56206</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f1eb8f251d1d3628f3b5e4ab9678c19f2283e2cb883f575f2085390894c531173</citedby><cites>FETCH-LOGICAL-c319t-f1eb8f251d1d3628f3b5e4ab9678c19f2283e2cb883f575f2085390894c531173</cites><orcidid>0000-0003-1652-5904 ; 0000-0003-3537-7150</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-023-17595-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-023-17595-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>MAILKA, Hamza</creatorcontrib><creatorcontrib>Abouzahir, Mohamed</creatorcontrib><creatorcontrib>Ramzi, Mustapha</creatorcontrib><title>An efficient end-to-end EKF-SLAM architecture based on LiDAR, GNSS, and IMU data sensor fusion for autonomous ground vehicles</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>The autonomous ground vehicle’s successful navigation with a high level of performance is dependent on accurate state estimation, which may help in providing excellent decision-making, planning, and control tasks. Outside factors like air bias and multipath effects have an impact on the GPS data, obtaining accurate pose estimation remains challenging. To obtain a highly precise pose estimation, the authors propose using an end-to-end simultaneous localization and mapping architecture based on scan matching and an extended Kalman filter to perform a successful prediction using lidar, GNSS and IMU data sensor fusion. In terms of pose estimation efficiency, the obtained results from EKF are compared to the UKF filter in different sequences on the Kitti dataset to more thoroughly evaluate our designed approach. The EKF filter has a good improvement, with approximately 0.29, 0.31, 0.24, 0.34, and 0.27 of the mean RMSE error of the trajectories 09_30_drive_0018, 09_30_drive_0020, 09_30_drive_0027, 10_03_drive_0033, and 10_03_drive_0034, respectively. The proposed approach was evaluated not only on KITTI dataset but also using our data recording platform called KONA Platform.</description><subject>Accuracy</subject><subject>Autonomous vehicles</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Control tasks</subject><subject>Data recording</subject><subject>Data Structures and Information Theory</subject><subject>Datasets</subject><subject>Decision making</subject><subject>Efficiency</subject><subject>Embedded systems</subject><subject>Extended Kalman filter</subject><subject>Global navigation satellite system</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Lidar</subject><subject>Localization</subject><subject>Mapping</subject><subject>Multimedia</subject><subject>Multimedia Information Systems</subject><subject>Multisensor fusion</subject><subject>Navigation systems</subject><subject>Optimization</subject><subject>Pose estimation</subject><subject>Root-mean-square errors</subject><subject>Sensors</subject><subject>Simultaneous localization and mapping</subject><subject>Spatial data</subject><subject>Special Purpose and Application-Based Systems</subject><subject>State estimation</subject><subject>Track 7: Connected and Autonomous Vehicles</subject><subject>Unmanned ground vehicles</subject><issn>1573-7721</issn><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOAjEURSdGExH9AVdN3FLtaynTWRIEJIImIuum02lhCEyxnZG48N8tYqIrV-8uzr0vOUlyDeQWCEnvAgDpUkwow5DyjOP9SdICnjKcphRO_-Tz5CKENSHQ47TbSj77FTLWlro0VY1MVeDa4XjQ8HGE59P-DCmvV2VtdN14g3IVTIFchablff-lg8ZP83kHqchPZgtUqFqhYKrgPLJNKCNnY1RN7Sq3dU1AS--aCL-bVak3JlwmZ1Ztgrn6ue1kMRq-Dh7w9Hk8GfSnWDPIamzB5MJSDgUUrEeFZTk3XZVnvVRoyCylghmqcyGY5Sm3lAjOMiKyruYMIGXt5Oa4u_PurTGhlmvX-Cq-lIzwKEIAO1D0SGnvQvDGyp0vt8p_SCDyoFkeNcuoWX5rlvtYYsdSiHC1NP53-p_WF4zLfsU</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>MAILKA, Hamza</creator><creator>Abouzahir, Mohamed</creator><creator>Ramzi, Mustapha</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1652-5904</orcidid><orcidid>https://orcid.org/0000-0003-3537-7150</orcidid></search><sort><creationdate>20240501</creationdate><title>An efficient end-to-end EKF-SLAM architecture based on LiDAR, GNSS, and IMU data sensor fusion for autonomous ground vehicles</title><author>MAILKA, Hamza ; Abouzahir, Mohamed ; Ramzi, Mustapha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f1eb8f251d1d3628f3b5e4ab9678c19f2283e2cb883f575f2085390894c531173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Autonomous vehicles</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Control tasks</topic><topic>Data recording</topic><topic>Data Structures and Information Theory</topic><topic>Datasets</topic><topic>Decision making</topic><topic>Efficiency</topic><topic>Embedded systems</topic><topic>Extended Kalman filter</topic><topic>Global navigation satellite system</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Lidar</topic><topic>Localization</topic><topic>Mapping</topic><topic>Multimedia</topic><topic>Multimedia Information Systems</topic><topic>Multisensor fusion</topic><topic>Navigation systems</topic><topic>Optimization</topic><topic>Pose estimation</topic><topic>Root-mean-square errors</topic><topic>Sensors</topic><topic>Simultaneous localization and mapping</topic><topic>Spatial data</topic><topic>Special Purpose and Application-Based Systems</topic><topic>State estimation</topic><topic>Track 7: Connected and Autonomous Vehicles</topic><topic>Unmanned ground vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MAILKA, Hamza</creatorcontrib><creatorcontrib>Abouzahir, Mohamed</creatorcontrib><creatorcontrib>Ramzi, Mustapha</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MAILKA, Hamza</au><au>Abouzahir, Mohamed</au><au>Ramzi, Mustapha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient end-to-end EKF-SLAM architecture based on LiDAR, GNSS, and IMU data sensor fusion for autonomous ground vehicles</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>83</volume><issue>18</issue><spage>56183</spage><epage>56206</epage><pages>56183-56206</pages><issn>1573-7721</issn><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>The autonomous ground vehicle’s successful navigation with a high level of performance is dependent on accurate state estimation, which may help in providing excellent decision-making, planning, and control tasks. Outside factors like air bias and multipath effects have an impact on the GPS data, obtaining accurate pose estimation remains challenging. To obtain a highly precise pose estimation, the authors propose using an end-to-end simultaneous localization and mapping architecture based on scan matching and an extended Kalman filter to perform a successful prediction using lidar, GNSS and IMU data sensor fusion. In terms of pose estimation efficiency, the obtained results from EKF are compared to the UKF filter in different sequences on the Kitti dataset to more thoroughly evaluate our designed approach. The EKF filter has a good improvement, with approximately 0.29, 0.31, 0.24, 0.34, and 0.27 of the mean RMSE error of the trajectories 09_30_drive_0018, 09_30_drive_0020, 09_30_drive_0027, 10_03_drive_0033, and 10_03_drive_0034, respectively. The proposed approach was evaluated not only on KITTI dataset but also using our data recording platform called KONA Platform.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-023-17595-w</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-1652-5904</orcidid><orcidid>https://orcid.org/0000-0003-3537-7150</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1573-7721
ispartof Multimedia tools and applications, 2024-05, Vol.83 (18), p.56183-56206
issn 1573-7721
1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_3055248137
source Springer Nature - Complete Springer Journals
subjects Accuracy
Autonomous vehicles
Computer Communication Networks
Computer Science
Control tasks
Data recording
Data Structures and Information Theory
Datasets
Decision making
Efficiency
Embedded systems
Extended Kalman filter
Global navigation satellite system
Global positioning systems
GPS
Lidar
Localization
Mapping
Multimedia
Multimedia Information Systems
Multisensor fusion
Navigation systems
Optimization
Pose estimation
Root-mean-square errors
Sensors
Simultaneous localization and mapping
Spatial data
Special Purpose and Application-Based Systems
State estimation
Track 7: Connected and Autonomous Vehicles
Unmanned ground vehicles
title An efficient end-to-end EKF-SLAM architecture based on LiDAR, GNSS, and IMU data sensor fusion for autonomous ground vehicles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A26%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient%20end-to-end%20EKF-SLAM%20architecture%20based%20on%20LiDAR,%20GNSS,%20and%20IMU%20data%20sensor%20fusion%20for%20autonomous%20ground%20vehicles&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=MAILKA,%20Hamza&rft.date=2024-05-01&rft.volume=83&rft.issue=18&rft.spage=56183&rft.epage=56206&rft.pages=56183-56206&rft.issn=1573-7721&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-023-17595-w&rft_dat=%3Cproquest_cross%3E3055248137%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3055248137&rft_id=info:pmid/&rfr_iscdi=true