An efficient end-to-end EKF-SLAM architecture based on LiDAR, GNSS, and IMU data sensor fusion for autonomous ground vehicles
The autonomous ground vehicle’s successful navigation with a high level of performance is dependent on accurate state estimation, which may help in providing excellent decision-making, planning, and control tasks. Outside factors like air bias and multipath effects have an impact on the GPS data, ob...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2024-05, Vol.83 (18), p.56183-56206 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 56206 |
---|---|
container_issue | 18 |
container_start_page | 56183 |
container_title | Multimedia tools and applications |
container_volume | 83 |
creator | MAILKA, Hamza Abouzahir, Mohamed Ramzi, Mustapha |
description | The autonomous ground vehicle’s successful navigation with a high level of performance is dependent on accurate state estimation, which may help in providing excellent decision-making, planning, and control tasks. Outside factors like air bias and multipath effects have an impact on the GPS data, obtaining accurate pose estimation remains challenging. To obtain a highly precise pose estimation, the authors propose using an end-to-end simultaneous localization and mapping architecture based on scan matching and an extended Kalman filter to perform a successful prediction using lidar, GNSS and IMU data sensor fusion. In terms of pose estimation efficiency, the obtained results from EKF are compared to the UKF filter in different sequences on the Kitti dataset to more thoroughly evaluate our designed approach. The EKF filter has a good improvement, with approximately 0.29, 0.31, 0.24, 0.34, and 0.27 of the mean RMSE error of the trajectories 09_30_drive_0018, 09_30_drive_0020, 09_30_drive_0027, 10_03_drive_0033, and 10_03_drive_0034, respectively. The proposed approach was evaluated not only on KITTI dataset but also using our data recording platform called KONA Platform. |
doi_str_mv | 10.1007/s11042-023-17595-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3055248137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3055248137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f1eb8f251d1d3628f3b5e4ab9678c19f2283e2cb883f575f2085390894c531173</originalsourceid><addsrcrecordid>eNp9kMFOAjEURSdGExH9AVdN3FLtaynTWRIEJIImIuum02lhCEyxnZG48N8tYqIrV-8uzr0vOUlyDeQWCEnvAgDpUkwow5DyjOP9SdICnjKcphRO_-Tz5CKENSHQ47TbSj77FTLWlro0VY1MVeDa4XjQ8HGE59P-DCmvV2VtdN14g3IVTIFchablff-lg8ZP83kHqchPZgtUqFqhYKrgPLJNKCNnY1RN7Sq3dU1AS--aCL-bVak3JlwmZ1Ztgrn6ue1kMRq-Dh7w9Hk8GfSnWDPIamzB5MJSDgUUrEeFZTk3XZVnvVRoyCylghmqcyGY5Sm3lAjOMiKyruYMIGXt5Oa4u_PurTGhlmvX-Cq-lIzwKEIAO1D0SGnvQvDGyp0vt8p_SCDyoFkeNcuoWX5rlvtYYsdSiHC1NP53-p_WF4zLfsU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3055248137</pqid></control><display><type>article</type><title>An efficient end-to-end EKF-SLAM architecture based on LiDAR, GNSS, and IMU data sensor fusion for autonomous ground vehicles</title><source>Springer Nature - Complete Springer Journals</source><creator>MAILKA, Hamza ; Abouzahir, Mohamed ; Ramzi, Mustapha</creator><creatorcontrib>MAILKA, Hamza ; Abouzahir, Mohamed ; Ramzi, Mustapha</creatorcontrib><description>The autonomous ground vehicle’s successful navigation with a high level of performance is dependent on accurate state estimation, which may help in providing excellent decision-making, planning, and control tasks. Outside factors like air bias and multipath effects have an impact on the GPS data, obtaining accurate pose estimation remains challenging. To obtain a highly precise pose estimation, the authors propose using an end-to-end simultaneous localization and mapping architecture based on scan matching and an extended Kalman filter to perform a successful prediction using lidar, GNSS and IMU data sensor fusion. In terms of pose estimation efficiency, the obtained results from EKF are compared to the UKF filter in different sequences on the Kitti dataset to more thoroughly evaluate our designed approach. The EKF filter has a good improvement, with approximately 0.29, 0.31, 0.24, 0.34, and 0.27 of the mean RMSE error of the trajectories 09_30_drive_0018, 09_30_drive_0020, 09_30_drive_0027, 10_03_drive_0033, and 10_03_drive_0034, respectively. The proposed approach was evaluated not only on KITTI dataset but also using our data recording platform called KONA Platform.</description><identifier>ISSN: 1573-7721</identifier><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-023-17595-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Autonomous vehicles ; Computer Communication Networks ; Computer Science ; Control tasks ; Data recording ; Data Structures and Information Theory ; Datasets ; Decision making ; Efficiency ; Embedded systems ; Extended Kalman filter ; Global navigation satellite system ; Global positioning systems ; GPS ; Lidar ; Localization ; Mapping ; Multimedia ; Multimedia Information Systems ; Multisensor fusion ; Navigation systems ; Optimization ; Pose estimation ; Root-mean-square errors ; Sensors ; Simultaneous localization and mapping ; Spatial data ; Special Purpose and Application-Based Systems ; State estimation ; Track 7: Connected and Autonomous Vehicles ; Unmanned ground vehicles</subject><ispartof>Multimedia tools and applications, 2024-05, Vol.83 (18), p.56183-56206</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f1eb8f251d1d3628f3b5e4ab9678c19f2283e2cb883f575f2085390894c531173</citedby><cites>FETCH-LOGICAL-c319t-f1eb8f251d1d3628f3b5e4ab9678c19f2283e2cb883f575f2085390894c531173</cites><orcidid>0000-0003-1652-5904 ; 0000-0003-3537-7150</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-023-17595-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-023-17595-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>MAILKA, Hamza</creatorcontrib><creatorcontrib>Abouzahir, Mohamed</creatorcontrib><creatorcontrib>Ramzi, Mustapha</creatorcontrib><title>An efficient end-to-end EKF-SLAM architecture based on LiDAR, GNSS, and IMU data sensor fusion for autonomous ground vehicles</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>The autonomous ground vehicle’s successful navigation with a high level of performance is dependent on accurate state estimation, which may help in providing excellent decision-making, planning, and control tasks. Outside factors like air bias and multipath effects have an impact on the GPS data, obtaining accurate pose estimation remains challenging. To obtain a highly precise pose estimation, the authors propose using an end-to-end simultaneous localization and mapping architecture based on scan matching and an extended Kalman filter to perform a successful prediction using lidar, GNSS and IMU data sensor fusion. In terms of pose estimation efficiency, the obtained results from EKF are compared to the UKF filter in different sequences on the Kitti dataset to more thoroughly evaluate our designed approach. The EKF filter has a good improvement, with approximately 0.29, 0.31, 0.24, 0.34, and 0.27 of the mean RMSE error of the trajectories 09_30_drive_0018, 09_30_drive_0020, 09_30_drive_0027, 10_03_drive_0033, and 10_03_drive_0034, respectively. The proposed approach was evaluated not only on KITTI dataset but also using our data recording platform called KONA Platform.</description><subject>Accuracy</subject><subject>Autonomous vehicles</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Control tasks</subject><subject>Data recording</subject><subject>Data Structures and Information Theory</subject><subject>Datasets</subject><subject>Decision making</subject><subject>Efficiency</subject><subject>Embedded systems</subject><subject>Extended Kalman filter</subject><subject>Global navigation satellite system</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Lidar</subject><subject>Localization</subject><subject>Mapping</subject><subject>Multimedia</subject><subject>Multimedia Information Systems</subject><subject>Multisensor fusion</subject><subject>Navigation systems</subject><subject>Optimization</subject><subject>Pose estimation</subject><subject>Root-mean-square errors</subject><subject>Sensors</subject><subject>Simultaneous localization and mapping</subject><subject>Spatial data</subject><subject>Special Purpose and Application-Based Systems</subject><subject>State estimation</subject><subject>Track 7: Connected and Autonomous Vehicles</subject><subject>Unmanned ground vehicles</subject><issn>1573-7721</issn><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMFOAjEURSdGExH9AVdN3FLtaynTWRIEJIImIuum02lhCEyxnZG48N8tYqIrV-8uzr0vOUlyDeQWCEnvAgDpUkwow5DyjOP9SdICnjKcphRO_-Tz5CKENSHQ47TbSj77FTLWlro0VY1MVeDa4XjQ8HGE59P-DCmvV2VtdN14g3IVTIFchablff-lg8ZP83kHqchPZgtUqFqhYKrgPLJNKCNnY1RN7Sq3dU1AS--aCL-bVak3JlwmZ1Ztgrn6ue1kMRq-Dh7w9Hk8GfSnWDPIamzB5MJSDgUUrEeFZTk3XZVnvVRoyCylghmqcyGY5Sm3lAjOMiKyruYMIGXt5Oa4u_PurTGhlmvX-Cq-lIzwKEIAO1D0SGnvQvDGyp0vt8p_SCDyoFkeNcuoWX5rlvtYYsdSiHC1NP53-p_WF4zLfsU</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>MAILKA, Hamza</creator><creator>Abouzahir, Mohamed</creator><creator>Ramzi, Mustapha</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1652-5904</orcidid><orcidid>https://orcid.org/0000-0003-3537-7150</orcidid></search><sort><creationdate>20240501</creationdate><title>An efficient end-to-end EKF-SLAM architecture based on LiDAR, GNSS, and IMU data sensor fusion for autonomous ground vehicles</title><author>MAILKA, Hamza ; Abouzahir, Mohamed ; Ramzi, Mustapha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f1eb8f251d1d3628f3b5e4ab9678c19f2283e2cb883f575f2085390894c531173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Autonomous vehicles</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Control tasks</topic><topic>Data recording</topic><topic>Data Structures and Information Theory</topic><topic>Datasets</topic><topic>Decision making</topic><topic>Efficiency</topic><topic>Embedded systems</topic><topic>Extended Kalman filter</topic><topic>Global navigation satellite system</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Lidar</topic><topic>Localization</topic><topic>Mapping</topic><topic>Multimedia</topic><topic>Multimedia Information Systems</topic><topic>Multisensor fusion</topic><topic>Navigation systems</topic><topic>Optimization</topic><topic>Pose estimation</topic><topic>Root-mean-square errors</topic><topic>Sensors</topic><topic>Simultaneous localization and mapping</topic><topic>Spatial data</topic><topic>Special Purpose and Application-Based Systems</topic><topic>State estimation</topic><topic>Track 7: Connected and Autonomous Vehicles</topic><topic>Unmanned ground vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MAILKA, Hamza</creatorcontrib><creatorcontrib>Abouzahir, Mohamed</creatorcontrib><creatorcontrib>Ramzi, Mustapha</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MAILKA, Hamza</au><au>Abouzahir, Mohamed</au><au>Ramzi, Mustapha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient end-to-end EKF-SLAM architecture based on LiDAR, GNSS, and IMU data sensor fusion for autonomous ground vehicles</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2024-05-01</date><risdate>2024</risdate><volume>83</volume><issue>18</issue><spage>56183</spage><epage>56206</epage><pages>56183-56206</pages><issn>1573-7721</issn><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>The autonomous ground vehicle’s successful navigation with a high level of performance is dependent on accurate state estimation, which may help in providing excellent decision-making, planning, and control tasks. Outside factors like air bias and multipath effects have an impact on the GPS data, obtaining accurate pose estimation remains challenging. To obtain a highly precise pose estimation, the authors propose using an end-to-end simultaneous localization and mapping architecture based on scan matching and an extended Kalman filter to perform a successful prediction using lidar, GNSS and IMU data sensor fusion. In terms of pose estimation efficiency, the obtained results from EKF are compared to the UKF filter in different sequences on the Kitti dataset to more thoroughly evaluate our designed approach. The EKF filter has a good improvement, with approximately 0.29, 0.31, 0.24, 0.34, and 0.27 of the mean RMSE error of the trajectories 09_30_drive_0018, 09_30_drive_0020, 09_30_drive_0027, 10_03_drive_0033, and 10_03_drive_0034, respectively. The proposed approach was evaluated not only on KITTI dataset but also using our data recording platform called KONA Platform.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-023-17595-w</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-1652-5904</orcidid><orcidid>https://orcid.org/0000-0003-3537-7150</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1573-7721 |
ispartof | Multimedia tools and applications, 2024-05, Vol.83 (18), p.56183-56206 |
issn | 1573-7721 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_journals_3055248137 |
source | Springer Nature - Complete Springer Journals |
subjects | Accuracy Autonomous vehicles Computer Communication Networks Computer Science Control tasks Data recording Data Structures and Information Theory Datasets Decision making Efficiency Embedded systems Extended Kalman filter Global navigation satellite system Global positioning systems GPS Lidar Localization Mapping Multimedia Multimedia Information Systems Multisensor fusion Navigation systems Optimization Pose estimation Root-mean-square errors Sensors Simultaneous localization and mapping Spatial data Special Purpose and Application-Based Systems State estimation Track 7: Connected and Autonomous Vehicles Unmanned ground vehicles |
title | An efficient end-to-end EKF-SLAM architecture based on LiDAR, GNSS, and IMU data sensor fusion for autonomous ground vehicles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A26%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient%20end-to-end%20EKF-SLAM%20architecture%20based%20on%20LiDAR,%20GNSS,%20and%20IMU%20data%20sensor%20fusion%20for%20autonomous%20ground%20vehicles&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=MAILKA,%20Hamza&rft.date=2024-05-01&rft.volume=83&rft.issue=18&rft.spage=56183&rft.epage=56206&rft.pages=56183-56206&rft.issn=1573-7721&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-023-17595-w&rft_dat=%3Cproquest_cross%3E3055248137%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3055248137&rft_id=info:pmid/&rfr_iscdi=true |