Radio Resource Management and Path Planning in Intelligent Transportation Systems via Reinforcement Learning for Environmental Sustainability

Efficient and dynamic path planning has become an important topic for urban areas with larger density of connected vehicles (CV) which results in reduction of travel time and directly contributes to environmental sustainability through reducing energy consumption. CVs exploit the cellular wireless v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-05
Hauptverfasser: Norouzi, S, Azarasa, N, Abedi, M R, Mokari, N, Seyedabrishami, S E, Saeedi, H, Jorswieck, E A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Norouzi, S
Azarasa, N
Abedi, M R
Mokari, N
Seyedabrishami, S E
Saeedi, H
Jorswieck, E A
description Efficient and dynamic path planning has become an important topic for urban areas with larger density of connected vehicles (CV) which results in reduction of travel time and directly contributes to environmental sustainability through reducing energy consumption. CVs exploit the cellular wireless vehicle-to-everything (C-V2X) communication technology to disseminate the vehicle-to-infrastructure (V2I) messages to the Base-station (BS) to improve situation awareness on urban roads. In this paper, we investigate radio resource management (RRM) in such a framework to minimize the age of information (AoI) so as to enhance path planning results. We use the fact that V2I messages with lower AoI value result in less error in estimating the road capacity and more accurate path planning. Through simulations, we compare road travel times and volume over capacity (V/C) against different levels of AoI and demonstrate the promising performance of the proposed framework.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3055206964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3055206964</sourcerecordid><originalsourceid>FETCH-proquest_journals_30552069643</originalsourceid><addsrcrecordid>eNqNjtFKQkEQhpcgUMp3GOha2HY9x7oOo6BA1HuZcjyNrLO2M0fwIXrnVukBuvrh_z8-_is3DDHejx8mIQzcSHXnvQ_tNDRNHLqfBW44w4I09-WT4B0FO9qTGKBsYI72BfOEIiwdsMCrGKXE3RlYFRQ95GJonAWWJzXaKxwZq49lm6vwYnojLBdBrWAmRy5ZzgMmWPZqyIIfnNhOt-56i0lp9Jc37u55tnp6GR9K_u5Jbb2rN6VO6-ibJvj2sZ3E_1G_UXJW4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3055206964</pqid></control><display><type>article</type><title>Radio Resource Management and Path Planning in Intelligent Transportation Systems via Reinforcement Learning for Environmental Sustainability</title><source>Freely Accessible Journals</source><creator>Norouzi, S ; Azarasa, N ; Abedi, M R ; Mokari, N ; Seyedabrishami, S E ; Saeedi, H ; Jorswieck, E A</creator><creatorcontrib>Norouzi, S ; Azarasa, N ; Abedi, M R ; Mokari, N ; Seyedabrishami, S E ; Saeedi, H ; Jorswieck, E A</creatorcontrib><description>Efficient and dynamic path planning has become an important topic for urban areas with larger density of connected vehicles (CV) which results in reduction of travel time and directly contributes to environmental sustainability through reducing energy consumption. CVs exploit the cellular wireless vehicle-to-everything (C-V2X) communication technology to disseminate the vehicle-to-infrastructure (V2I) messages to the Base-station (BS) to improve situation awareness on urban roads. In this paper, we investigate radio resource management (RRM) in such a framework to minimize the age of information (AoI) so as to enhance path planning results. We use the fact that V2I messages with lower AoI value result in less error in estimating the road capacity and more accurate path planning. Through simulations, we compare road travel times and volume over capacity (V/C) against different levels of AoI and demonstrate the promising performance of the proposed framework.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Energy consumption ; Intelligent transportation systems ; Messages ; Path planning ; Resource management ; Roads ; Situational awareness ; Sustainability ; Travel time ; Urban areas ; Vehicle-to-infrastructure ; Wireless communications</subject><ispartof>arXiv.org, 2024-05</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Norouzi, S</creatorcontrib><creatorcontrib>Azarasa, N</creatorcontrib><creatorcontrib>Abedi, M R</creatorcontrib><creatorcontrib>Mokari, N</creatorcontrib><creatorcontrib>Seyedabrishami, S E</creatorcontrib><creatorcontrib>Saeedi, H</creatorcontrib><creatorcontrib>Jorswieck, E A</creatorcontrib><title>Radio Resource Management and Path Planning in Intelligent Transportation Systems via Reinforcement Learning for Environmental Sustainability</title><title>arXiv.org</title><description>Efficient and dynamic path planning has become an important topic for urban areas with larger density of connected vehicles (CV) which results in reduction of travel time and directly contributes to environmental sustainability through reducing energy consumption. CVs exploit the cellular wireless vehicle-to-everything (C-V2X) communication technology to disseminate the vehicle-to-infrastructure (V2I) messages to the Base-station (BS) to improve situation awareness on urban roads. In this paper, we investigate radio resource management (RRM) in such a framework to minimize the age of information (AoI) so as to enhance path planning results. We use the fact that V2I messages with lower AoI value result in less error in estimating the road capacity and more accurate path planning. Through simulations, we compare road travel times and volume over capacity (V/C) against different levels of AoI and demonstrate the promising performance of the proposed framework.</description><subject>Energy consumption</subject><subject>Intelligent transportation systems</subject><subject>Messages</subject><subject>Path planning</subject><subject>Resource management</subject><subject>Roads</subject><subject>Situational awareness</subject><subject>Sustainability</subject><subject>Travel time</subject><subject>Urban areas</subject><subject>Vehicle-to-infrastructure</subject><subject>Wireless communications</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjtFKQkEQhpcgUMp3GOha2HY9x7oOo6BA1HuZcjyNrLO2M0fwIXrnVukBuvrh_z8-_is3DDHejx8mIQzcSHXnvQ_tNDRNHLqfBW44w4I09-WT4B0FO9qTGKBsYI72BfOEIiwdsMCrGKXE3RlYFRQ95GJonAWWJzXaKxwZq49lm6vwYnojLBdBrWAmRy5ZzgMmWPZqyIIfnNhOt-56i0lp9Jc37u55tnp6GR9K_u5Jbb2rN6VO6-ibJvj2sZ3E_1G_UXJW4g</recordid><startdate>20240513</startdate><enddate>20240513</enddate><creator>Norouzi, S</creator><creator>Azarasa, N</creator><creator>Abedi, M R</creator><creator>Mokari, N</creator><creator>Seyedabrishami, S E</creator><creator>Saeedi, H</creator><creator>Jorswieck, E A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240513</creationdate><title>Radio Resource Management and Path Planning in Intelligent Transportation Systems via Reinforcement Learning for Environmental Sustainability</title><author>Norouzi, S ; Azarasa, N ; Abedi, M R ; Mokari, N ; Seyedabrishami, S E ; Saeedi, H ; Jorswieck, E A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30552069643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Energy consumption</topic><topic>Intelligent transportation systems</topic><topic>Messages</topic><topic>Path planning</topic><topic>Resource management</topic><topic>Roads</topic><topic>Situational awareness</topic><topic>Sustainability</topic><topic>Travel time</topic><topic>Urban areas</topic><topic>Vehicle-to-infrastructure</topic><topic>Wireless communications</topic><toplevel>online_resources</toplevel><creatorcontrib>Norouzi, S</creatorcontrib><creatorcontrib>Azarasa, N</creatorcontrib><creatorcontrib>Abedi, M R</creatorcontrib><creatorcontrib>Mokari, N</creatorcontrib><creatorcontrib>Seyedabrishami, S E</creatorcontrib><creatorcontrib>Saeedi, H</creatorcontrib><creatorcontrib>Jorswieck, E A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Norouzi, S</au><au>Azarasa, N</au><au>Abedi, M R</au><au>Mokari, N</au><au>Seyedabrishami, S E</au><au>Saeedi, H</au><au>Jorswieck, E A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Radio Resource Management and Path Planning in Intelligent Transportation Systems via Reinforcement Learning for Environmental Sustainability</atitle><jtitle>arXiv.org</jtitle><date>2024-05-13</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Efficient and dynamic path planning has become an important topic for urban areas with larger density of connected vehicles (CV) which results in reduction of travel time and directly contributes to environmental sustainability through reducing energy consumption. CVs exploit the cellular wireless vehicle-to-everything (C-V2X) communication technology to disseminate the vehicle-to-infrastructure (V2I) messages to the Base-station (BS) to improve situation awareness on urban roads. In this paper, we investigate radio resource management (RRM) in such a framework to minimize the age of information (AoI) so as to enhance path planning results. We use the fact that V2I messages with lower AoI value result in less error in estimating the road capacity and more accurate path planning. Through simulations, we compare road travel times and volume over capacity (V/C) against different levels of AoI and demonstrate the promising performance of the proposed framework.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_3055206964
source Freely Accessible Journals
subjects Energy consumption
Intelligent transportation systems
Messages
Path planning
Resource management
Roads
Situational awareness
Sustainability
Travel time
Urban areas
Vehicle-to-infrastructure
Wireless communications
title Radio Resource Management and Path Planning in Intelligent Transportation Systems via Reinforcement Learning for Environmental Sustainability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A06%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Radio%20Resource%20Management%20and%20Path%20Planning%20in%20Intelligent%20Transportation%20Systems%20via%20Reinforcement%20Learning%20for%20Environmental%20Sustainability&rft.jtitle=arXiv.org&rft.au=Norouzi,%20S&rft.date=2024-05-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3055206964%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3055206964&rft_id=info:pmid/&rfr_iscdi=true