Radio Resource Management and Path Planning in Intelligent Transportation Systems via Reinforcement Learning for Environmental Sustainability
Efficient and dynamic path planning has become an important topic for urban areas with larger density of connected vehicles (CV) which results in reduction of travel time and directly contributes to environmental sustainability through reducing energy consumption. CVs exploit the cellular wireless v...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-05 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Norouzi, S Azarasa, N Abedi, M R Mokari, N Seyedabrishami, S E Saeedi, H Jorswieck, E A |
description | Efficient and dynamic path planning has become an important topic for urban areas with larger density of connected vehicles (CV) which results in reduction of travel time and directly contributes to environmental sustainability through reducing energy consumption. CVs exploit the cellular wireless vehicle-to-everything (C-V2X) communication technology to disseminate the vehicle-to-infrastructure (V2I) messages to the Base-station (BS) to improve situation awareness on urban roads. In this paper, we investigate radio resource management (RRM) in such a framework to minimize the age of information (AoI) so as to enhance path planning results. We use the fact that V2I messages with lower AoI value result in less error in estimating the road capacity and more accurate path planning. Through simulations, we compare road travel times and volume over capacity (V/C) against different levels of AoI and demonstrate the promising performance of the proposed framework. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3055206964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3055206964</sourcerecordid><originalsourceid>FETCH-proquest_journals_30552069643</originalsourceid><addsrcrecordid>eNqNjtFKQkEQhpcgUMp3GOha2HY9x7oOo6BA1HuZcjyNrLO2M0fwIXrnVukBuvrh_z8-_is3DDHejx8mIQzcSHXnvQ_tNDRNHLqfBW44w4I09-WT4B0FO9qTGKBsYI72BfOEIiwdsMCrGKXE3RlYFRQ95GJonAWWJzXaKxwZq49lm6vwYnojLBdBrWAmRy5ZzgMmWPZqyIIfnNhOt-56i0lp9Jc37u55tnp6GR9K_u5Jbb2rN6VO6-ibJvj2sZ3E_1G_UXJW4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3055206964</pqid></control><display><type>article</type><title>Radio Resource Management and Path Planning in Intelligent Transportation Systems via Reinforcement Learning for Environmental Sustainability</title><source>Freely Accessible Journals</source><creator>Norouzi, S ; Azarasa, N ; Abedi, M R ; Mokari, N ; Seyedabrishami, S E ; Saeedi, H ; Jorswieck, E A</creator><creatorcontrib>Norouzi, S ; Azarasa, N ; Abedi, M R ; Mokari, N ; Seyedabrishami, S E ; Saeedi, H ; Jorswieck, E A</creatorcontrib><description>Efficient and dynamic path planning has become an important topic for urban areas with larger density of connected vehicles (CV) which results in reduction of travel time and directly contributes to environmental sustainability through reducing energy consumption. CVs exploit the cellular wireless vehicle-to-everything (C-V2X) communication technology to disseminate the vehicle-to-infrastructure (V2I) messages to the Base-station (BS) to improve situation awareness on urban roads. In this paper, we investigate radio resource management (RRM) in such a framework to minimize the age of information (AoI) so as to enhance path planning results. We use the fact that V2I messages with lower AoI value result in less error in estimating the road capacity and more accurate path planning. Through simulations, we compare road travel times and volume over capacity (V/C) against different levels of AoI and demonstrate the promising performance of the proposed framework.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Energy consumption ; Intelligent transportation systems ; Messages ; Path planning ; Resource management ; Roads ; Situational awareness ; Sustainability ; Travel time ; Urban areas ; Vehicle-to-infrastructure ; Wireless communications</subject><ispartof>arXiv.org, 2024-05</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Norouzi, S</creatorcontrib><creatorcontrib>Azarasa, N</creatorcontrib><creatorcontrib>Abedi, M R</creatorcontrib><creatorcontrib>Mokari, N</creatorcontrib><creatorcontrib>Seyedabrishami, S E</creatorcontrib><creatorcontrib>Saeedi, H</creatorcontrib><creatorcontrib>Jorswieck, E A</creatorcontrib><title>Radio Resource Management and Path Planning in Intelligent Transportation Systems via Reinforcement Learning for Environmental Sustainability</title><title>arXiv.org</title><description>Efficient and dynamic path planning has become an important topic for urban areas with larger density of connected vehicles (CV) which results in reduction of travel time and directly contributes to environmental sustainability through reducing energy consumption. CVs exploit the cellular wireless vehicle-to-everything (C-V2X) communication technology to disseminate the vehicle-to-infrastructure (V2I) messages to the Base-station (BS) to improve situation awareness on urban roads. In this paper, we investigate radio resource management (RRM) in such a framework to minimize the age of information (AoI) so as to enhance path planning results. We use the fact that V2I messages with lower AoI value result in less error in estimating the road capacity and more accurate path planning. Through simulations, we compare road travel times and volume over capacity (V/C) against different levels of AoI and demonstrate the promising performance of the proposed framework.</description><subject>Energy consumption</subject><subject>Intelligent transportation systems</subject><subject>Messages</subject><subject>Path planning</subject><subject>Resource management</subject><subject>Roads</subject><subject>Situational awareness</subject><subject>Sustainability</subject><subject>Travel time</subject><subject>Urban areas</subject><subject>Vehicle-to-infrastructure</subject><subject>Wireless communications</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjtFKQkEQhpcgUMp3GOha2HY9x7oOo6BA1HuZcjyNrLO2M0fwIXrnVukBuvrh_z8-_is3DDHejx8mIQzcSHXnvQ_tNDRNHLqfBW44w4I09-WT4B0FO9qTGKBsYI72BfOEIiwdsMCrGKXE3RlYFRQ95GJonAWWJzXaKxwZq49lm6vwYnojLBdBrWAmRy5ZzgMmWPZqyIIfnNhOt-56i0lp9Jc37u55tnp6GR9K_u5Jbb2rN6VO6-ibJvj2sZ3E_1G_UXJW4g</recordid><startdate>20240513</startdate><enddate>20240513</enddate><creator>Norouzi, S</creator><creator>Azarasa, N</creator><creator>Abedi, M R</creator><creator>Mokari, N</creator><creator>Seyedabrishami, S E</creator><creator>Saeedi, H</creator><creator>Jorswieck, E A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240513</creationdate><title>Radio Resource Management and Path Planning in Intelligent Transportation Systems via Reinforcement Learning for Environmental Sustainability</title><author>Norouzi, S ; Azarasa, N ; Abedi, M R ; Mokari, N ; Seyedabrishami, S E ; Saeedi, H ; Jorswieck, E A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_30552069643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Energy consumption</topic><topic>Intelligent transportation systems</topic><topic>Messages</topic><topic>Path planning</topic><topic>Resource management</topic><topic>Roads</topic><topic>Situational awareness</topic><topic>Sustainability</topic><topic>Travel time</topic><topic>Urban areas</topic><topic>Vehicle-to-infrastructure</topic><topic>Wireless communications</topic><toplevel>online_resources</toplevel><creatorcontrib>Norouzi, S</creatorcontrib><creatorcontrib>Azarasa, N</creatorcontrib><creatorcontrib>Abedi, M R</creatorcontrib><creatorcontrib>Mokari, N</creatorcontrib><creatorcontrib>Seyedabrishami, S E</creatorcontrib><creatorcontrib>Saeedi, H</creatorcontrib><creatorcontrib>Jorswieck, E A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Norouzi, S</au><au>Azarasa, N</au><au>Abedi, M R</au><au>Mokari, N</au><au>Seyedabrishami, S E</au><au>Saeedi, H</au><au>Jorswieck, E A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Radio Resource Management and Path Planning in Intelligent Transportation Systems via Reinforcement Learning for Environmental Sustainability</atitle><jtitle>arXiv.org</jtitle><date>2024-05-13</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Efficient and dynamic path planning has become an important topic for urban areas with larger density of connected vehicles (CV) which results in reduction of travel time and directly contributes to environmental sustainability through reducing energy consumption. CVs exploit the cellular wireless vehicle-to-everything (C-V2X) communication technology to disseminate the vehicle-to-infrastructure (V2I) messages to the Base-station (BS) to improve situation awareness on urban roads. In this paper, we investigate radio resource management (RRM) in such a framework to minimize the age of information (AoI) so as to enhance path planning results. We use the fact that V2I messages with lower AoI value result in less error in estimating the road capacity and more accurate path planning. Through simulations, we compare road travel times and volume over capacity (V/C) against different levels of AoI and demonstrate the promising performance of the proposed framework.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3055206964 |
source | Freely Accessible Journals |
subjects | Energy consumption Intelligent transportation systems Messages Path planning Resource management Roads Situational awareness Sustainability Travel time Urban areas Vehicle-to-infrastructure Wireless communications |
title | Radio Resource Management and Path Planning in Intelligent Transportation Systems via Reinforcement Learning for Environmental Sustainability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A06%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Radio%20Resource%20Management%20and%20Path%20Planning%20in%20Intelligent%20Transportation%20Systems%20via%20Reinforcement%20Learning%20for%20Environmental%20Sustainability&rft.jtitle=arXiv.org&rft.au=Norouzi,%20S&rft.date=2024-05-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3055206964%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3055206964&rft_id=info:pmid/&rfr_iscdi=true |