On the Convergence of Block Majorization-Minimization Algorithms on the Grassmann Manifold
The Majorization-Minimization (MM) framework is widely used to derive efficient algorithms for specific problems that require the optimization of a cost function (which can be convex or not). It is based on a sequential optimization of a surrogate function over closed convex sets. A natural extensio...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing letters 2024, Vol.31, p.1314-1318 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1318 |
---|---|
container_issue | |
container_start_page | 1314 |
container_title | IEEE signal processing letters |
container_volume | 31 |
creator | Lopez, Carlos Alejandro Riba, Jaume |
description | The Majorization-Minimization (MM) framework is widely used to derive efficient algorithms for specific problems that require the optimization of a cost function (which can be convex or not). It is based on a sequential optimization of a surrogate function over closed convex sets. A natural extension of this framework incorporates ideas of Block Coordinate Descent (BCD) algorithms into the MM framework, also known as block MM. The rationale behind the block extension is to partition the optimization variables into several independent blocks, to obtain a surrogate for each block, and to optimize the surrogate of each block cyclically. However, known convergence proofs of the block MM are only valid under the assumption that the constraint sets are closed and convex. Hence, the global convergence of the block MM is not ensured for non-convex sets by classical proofs, which is needed in iterative schemes that naturally emerge in a wide range of subspace-based signal processing applications. For this purpose, the aim of this letter is to review the convergence proof of the block MM and extend it for blocks constrained in the Grassmann manifold. |
doi_str_mv | 10.1109/LSP.2024.3396660 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3055179006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10518081</ieee_id><sourcerecordid>3055179006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-c4226c2b8315ba612e3f1c5ed689849bdc5291149a878b4053395ea5a77bf9ac3</originalsourceid><addsrcrecordid>eNpNkDFPwzAQhS0EEqWwMzBEYk4527Fjj6WCgtSqSMDCYjmu06YkdrFTJPj1uGoHprvTvfdO9yF0jWGEMci72evLiAApRpRKzjmcoAFmTOSEcnyaeighlxLEObqIcQMAAgs2QB8Ll_Vrm028-7ZhZZ2xma-z-9abz2yuNz40v7pvvMvnjWu645CN21Xa9OsuZv4QMA06xk47l1yuqX27vERntW6jvTrWIXp_fHibPOWzxfR5Mp7lhoiyz01BCDekEhSzSnNMLK2xYXbJhRSFrJaGEYlxIbUoRVUASw8yq5kuy6qW2tAhuj3kboP_2tnYq43fBZdOKgqM4VIC8KSCg8oEH2OwtdqGptPhR2FQe4IqEVR7gupIMFluDpbGWvtPzrBI9OgfhKFshA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3055179006</pqid></control><display><type>article</type><title>On the Convergence of Block Majorization-Minimization Algorithms on the Grassmann Manifold</title><source>IEEE Electronic Library (IEL)</source><creator>Lopez, Carlos Alejandro ; Riba, Jaume</creator><creatorcontrib>Lopez, Carlos Alejandro ; Riba, Jaume</creatorcontrib><description>The Majorization-Minimization (MM) framework is widely used to derive efficient algorithms for specific problems that require the optimization of a cost function (which can be convex or not). It is based on a sequential optimization of a surrogate function over closed convex sets. A natural extension of this framework incorporates ideas of Block Coordinate Descent (BCD) algorithms into the MM framework, also known as block MM. The rationale behind the block extension is to partition the optimization variables into several independent blocks, to obtain a surrogate for each block, and to optimize the surrogate of each block cyclically. However, known convergence proofs of the block MM are only valid under the assumption that the constraint sets are closed and convex. Hence, the global convergence of the block MM is not ensured for non-convex sets by classical proofs, which is needed in iterative schemes that naturally emerge in a wide range of subspace-based signal processing applications. For this purpose, the aim of this letter is to review the convergence proof of the block MM and extend it for blocks constrained in the Grassmann manifold.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2024.3396660</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Constraints ; Convergence ; Convexity ; Cost function ; geodesically convex optimization ; Grassmann manifold ; Independent variables ; majorization-minimization ; Manifolds ; Manifolds (mathematics) ; Minimization ; Non-convex optimization ; Optimization ; Principal component analysis ; Riemannian optimization ; Signal processing ; Signal processing algorithms</subject><ispartof>IEEE signal processing letters, 2024, Vol.31, p.1314-1318</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-c4226c2b8315ba612e3f1c5ed689849bdc5291149a878b4053395ea5a77bf9ac3</cites><orcidid>0000-0002-5515-8169 ; 0000-0002-2216-2786</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10518081$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,4012,27910,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10518081$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lopez, Carlos Alejandro</creatorcontrib><creatorcontrib>Riba, Jaume</creatorcontrib><title>On the Convergence of Block Majorization-Minimization Algorithms on the Grassmann Manifold</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>The Majorization-Minimization (MM) framework is widely used to derive efficient algorithms for specific problems that require the optimization of a cost function (which can be convex or not). It is based on a sequential optimization of a surrogate function over closed convex sets. A natural extension of this framework incorporates ideas of Block Coordinate Descent (BCD) algorithms into the MM framework, also known as block MM. The rationale behind the block extension is to partition the optimization variables into several independent blocks, to obtain a surrogate for each block, and to optimize the surrogate of each block cyclically. However, known convergence proofs of the block MM are only valid under the assumption that the constraint sets are closed and convex. Hence, the global convergence of the block MM is not ensured for non-convex sets by classical proofs, which is needed in iterative schemes that naturally emerge in a wide range of subspace-based signal processing applications. For this purpose, the aim of this letter is to review the convergence proof of the block MM and extend it for blocks constrained in the Grassmann manifold.</description><subject>Algorithms</subject><subject>Constraints</subject><subject>Convergence</subject><subject>Convexity</subject><subject>Cost function</subject><subject>geodesically convex optimization</subject><subject>Grassmann manifold</subject><subject>Independent variables</subject><subject>majorization-minimization</subject><subject>Manifolds</subject><subject>Manifolds (mathematics)</subject><subject>Minimization</subject><subject>Non-convex optimization</subject><subject>Optimization</subject><subject>Principal component analysis</subject><subject>Riemannian optimization</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkDFPwzAQhS0EEqWwMzBEYk4527Fjj6WCgtSqSMDCYjmu06YkdrFTJPj1uGoHprvTvfdO9yF0jWGEMci72evLiAApRpRKzjmcoAFmTOSEcnyaeighlxLEObqIcQMAAgs2QB8Ll_Vrm028-7ZhZZ2xma-z-9abz2yuNz40v7pvvMvnjWu645CN21Xa9OsuZv4QMA06xk47l1yuqX27vERntW6jvTrWIXp_fHibPOWzxfR5Mp7lhoiyz01BCDekEhSzSnNMLK2xYXbJhRSFrJaGEYlxIbUoRVUASw8yq5kuy6qW2tAhuj3kboP_2tnYq43fBZdOKgqM4VIC8KSCg8oEH2OwtdqGptPhR2FQe4IqEVR7gupIMFluDpbGWvtPzrBI9OgfhKFshA</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Lopez, Carlos Alejandro</creator><creator>Riba, Jaume</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5515-8169</orcidid><orcidid>https://orcid.org/0000-0002-2216-2786</orcidid></search><sort><creationdate>2024</creationdate><title>On the Convergence of Block Majorization-Minimization Algorithms on the Grassmann Manifold</title><author>Lopez, Carlos Alejandro ; Riba, Jaume</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-c4226c2b8315ba612e3f1c5ed689849bdc5291149a878b4053395ea5a77bf9ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Constraints</topic><topic>Convergence</topic><topic>Convexity</topic><topic>Cost function</topic><topic>geodesically convex optimization</topic><topic>Grassmann manifold</topic><topic>Independent variables</topic><topic>majorization-minimization</topic><topic>Manifolds</topic><topic>Manifolds (mathematics)</topic><topic>Minimization</topic><topic>Non-convex optimization</topic><topic>Optimization</topic><topic>Principal component analysis</topic><topic>Riemannian optimization</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopez, Carlos Alejandro</creatorcontrib><creatorcontrib>Riba, Jaume</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lopez, Carlos Alejandro</au><au>Riba, Jaume</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Convergence of Block Majorization-Minimization Algorithms on the Grassmann Manifold</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2024</date><risdate>2024</risdate><volume>31</volume><spage>1314</spage><epage>1318</epage><pages>1314-1318</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>The Majorization-Minimization (MM) framework is widely used to derive efficient algorithms for specific problems that require the optimization of a cost function (which can be convex or not). It is based on a sequential optimization of a surrogate function over closed convex sets. A natural extension of this framework incorporates ideas of Block Coordinate Descent (BCD) algorithms into the MM framework, also known as block MM. The rationale behind the block extension is to partition the optimization variables into several independent blocks, to obtain a surrogate for each block, and to optimize the surrogate of each block cyclically. However, known convergence proofs of the block MM are only valid under the assumption that the constraint sets are closed and convex. Hence, the global convergence of the block MM is not ensured for non-convex sets by classical proofs, which is needed in iterative schemes that naturally emerge in a wide range of subspace-based signal processing applications. For this purpose, the aim of this letter is to review the convergence proof of the block MM and extend it for blocks constrained in the Grassmann manifold.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2024.3396660</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-5515-8169</orcidid><orcidid>https://orcid.org/0000-0002-2216-2786</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1070-9908 |
ispartof | IEEE signal processing letters, 2024, Vol.31, p.1314-1318 |
issn | 1070-9908 1558-2361 |
language | eng |
recordid | cdi_proquest_journals_3055179006 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Constraints Convergence Convexity Cost function geodesically convex optimization Grassmann manifold Independent variables majorization-minimization Manifolds Manifolds (mathematics) Minimization Non-convex optimization Optimization Principal component analysis Riemannian optimization Signal processing Signal processing algorithms |
title | On the Convergence of Block Majorization-Minimization Algorithms on the Grassmann Manifold |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T23%3A46%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Convergence%20of%20Block%20Majorization-Minimization%20Algorithms%20on%20the%20Grassmann%20Manifold&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Lopez,%20Carlos%20Alejandro&rft.date=2024&rft.volume=31&rft.spage=1314&rft.epage=1318&rft.pages=1314-1318&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2024.3396660&rft_dat=%3Cproquest_RIE%3E3055179006%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3055179006&rft_id=info:pmid/&rft_ieee_id=10518081&rfr_iscdi=true |